This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set x , there exists a set y containing x , the subsets of the members of y , the power sets of the members of y , and the subsets of y of cardinality less than that of y . (Contributed by NM, 21-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axgroth6 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth5 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) | |
| 2 | biid | ⊢ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 3 | pweq | ⊢ ( 𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣 ) | |
| 4 | 3 | sseq1d | ⊢ ( 𝑧 = 𝑣 → ( 𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑣 ⊆ 𝑦 ) ) |
| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ↔ ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 ) |
| 6 | ssid | ⊢ 𝒫 𝑧 ⊆ 𝒫 𝑧 | |
| 7 | sseq2 | ⊢ ( 𝑤 = 𝒫 𝑧 → ( 𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) ) | |
| 8 | 7 | rspcev | ⊢ ( ( 𝒫 𝑧 ∈ 𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) → ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) |
| 9 | 6 8 | mpan2 | ⊢ ( 𝒫 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) |
| 10 | pweq | ⊢ ( 𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤 ) | |
| 11 | 10 | sseq1d | ⊢ ( 𝑣 = 𝑤 → ( 𝒫 𝑣 ⊆ 𝑦 ↔ 𝒫 𝑤 ⊆ 𝑦 ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 → ( 𝑤 ∈ 𝑦 → 𝒫 𝑤 ⊆ 𝑦 ) ) |
| 13 | pwss | ⊢ ( 𝒫 𝑤 ⊆ 𝑦 ↔ ∀ 𝑣 ( 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦 ) ) | |
| 14 | vpwex | ⊢ 𝒫 𝑧 ∈ V | |
| 15 | sseq1 | ⊢ ( 𝑣 = 𝒫 𝑧 → ( 𝑣 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝑤 ) ) | |
| 16 | eleq1 | ⊢ ( 𝑣 = 𝒫 𝑧 → ( 𝑣 ∈ 𝑦 ↔ 𝒫 𝑧 ∈ 𝑦 ) ) | |
| 17 | 15 16 | imbi12d | ⊢ ( 𝑣 = 𝒫 𝑧 → ( ( 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦 ) ↔ ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦 ) ) ) |
| 18 | 14 17 | spcv | ⊢ ( ∀ 𝑣 ( 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦 ) → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦 ) ) |
| 19 | 13 18 | sylbi | ⊢ ( 𝒫 𝑤 ⊆ 𝑦 → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦 ) ) |
| 20 | 12 19 | syl6 | ⊢ ( ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 → ( 𝑤 ∈ 𝑦 → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦 ) ) ) |
| 21 | 20 | rexlimdv | ⊢ ( ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 → ( ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦 ) ) |
| 22 | 9 21 | impbid2 | ⊢ ( ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 → ( 𝒫 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 23 | 22 | ralbidv | ⊢ ( ∀ 𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 24 | 5 23 | sylbi | ⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 25 | 24 | pm5.32i | ⊢ ( ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 26 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ) ) | |
| 27 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) | |
| 28 | 25 26 27 | 3bitr4i | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 29 | velpw | ⊢ ( 𝑧 ∈ 𝒫 𝑦 ↔ 𝑧 ⊆ 𝑦 ) | |
| 30 | impexp | ⊢ ( ( ( 𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦 ) → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≼ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) | |
| 31 | ssdomg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) ) | |
| 32 | 31 | elv | ⊢ ( 𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦 ) |
| 33 | 32 | pm4.71i | ⊢ ( 𝑧 ⊆ 𝑦 ↔ ( 𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦 ) ) |
| 34 | 33 | imbi1i | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ( ( 𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦 ) → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 35 | brsdom | ⊢ ( 𝑧 ≺ 𝑦 ↔ ( 𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦 ) ) | |
| 36 | 35 | imbi1i | ⊢ ( ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( ( 𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ) |
| 37 | impexp | ⊢ ( ( ( 𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≼ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) | |
| 38 | 36 37 | bitri | ⊢ ( ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≼ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 39 | 38 | imbi2i | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≼ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) |
| 40 | 30 34 39 | 3bitr4ri | ⊢ ( ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 41 | 40 | pm5.74ri | ⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 42 | pm4.64 | ⊢ ( ( ¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) | |
| 43 | 41 42 | bitrdi | ⊢ ( 𝑧 ⊆ 𝑦 → ( ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 44 | 29 43 | sylbi | ⊢ ( 𝑧 ∈ 𝒫 𝑦 → ( ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 45 | 44 | ralbiia | ⊢ ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 46 | 2 28 45 | 3anbi123i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 47 | 46 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 48 | 1 47 | mpbir | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦 ) ) |