This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc is used to derive this version. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axgroth3 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth2 | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 2 | ssid | ⊢ 𝑧 ⊆ 𝑧 | |
| 3 | sseq1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ⊆ 𝑧 ↔ 𝑧 ⊆ 𝑧 ) ) | |
| 4 | elequ1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 5 | 3 4 | imbi12d | ⊢ ( 𝑣 = 𝑧 → ( ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ↔ ( 𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤 ) ) ) |
| 6 | 5 | spvv | ⊢ ( ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → ( 𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤 ) ) |
| 7 | 2 6 | mpi | ⊢ ( ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) |
| 9 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑤 ∈ 𝑦 𝑧 ∈ 𝑤 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) → 𝑧 ∈ ∪ 𝑦 ) |
| 11 | 10 | adantl | ⊢ ( ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → 𝑧 ∈ ∪ 𝑦 ) |
| 12 | 11 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦 ) |
| 13 | dfss3 | ⊢ ( 𝑦 ⊆ ∪ 𝑦 ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦 ) | |
| 14 | 12 13 | sylibr | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) → 𝑦 ⊆ ∪ 𝑦 ) |
| 15 | vex | ⊢ 𝑦 ∈ V | |
| 16 | grothac | ⊢ dom card = V | |
| 17 | 15 16 | eleqtrri | ⊢ 𝑦 ∈ dom card |
| 18 | vex | ⊢ 𝑧 ∈ V | |
| 19 | 18 16 | eleqtrri | ⊢ 𝑧 ∈ dom card |
| 20 | ne0i | ⊢ ( 𝑥 ∈ 𝑦 → 𝑦 ≠ ∅ ) | |
| 21 | 15 | dominf | ⊢ ( ( 𝑦 ≠ ∅ ∧ 𝑦 ⊆ ∪ 𝑦 ) → ω ≼ 𝑦 ) |
| 22 | 20 21 | sylan | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ω ≼ 𝑦 ) |
| 23 | infdif2 | ⊢ ( ( 𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦 ) → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧 ) ) | |
| 24 | 17 19 22 23 | mp3an12i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧 ) ) |
| 25 | 24 | orbi1d | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 27 | 26 | albidv | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦 ) → ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 28 | 14 27 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) → ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 29 | 28 | pm5.32i | ⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 30 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) | |
| 31 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) | |
| 32 | 29 30 31 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 33 | 32 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 34 | 1 33 | mpbir | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |