This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership v_i e. v_j is coded as <. (/) , <. i , j >. >. . (Contributed by AV, 15-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goel | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | ⊢ ( 𝐼 ∈𝑔 𝐽 ) = ( ∈𝑔 ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 2 | df-goel | ⊢ ∈𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ 〈 ∅ , 𝑥 〉 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ∈𝑔 = ( 𝑥 ∈ ( ω × ω ) ↦ 〈 ∅ , 𝑥 〉 ) ) |
| 4 | opeq2 | ⊢ ( 𝑥 = 〈 𝐼 , 𝐽 〉 → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ 𝑥 = 〈 𝐼 , 𝐽 〉 ) → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) |
| 6 | opelxpi | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → 〈 𝐼 , 𝐽 〉 ∈ ( ω × ω ) ) | |
| 7 | opex | ⊢ 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ∈ V | |
| 8 | 7 | a1i | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ∈ V ) |
| 9 | 3 5 6 8 | fvmptd | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ∈𝑔 ‘ 〈 𝐼 , 𝐽 〉 ) = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) |
| 10 | 1 9 | eqtrid | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) |