This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gonar (induction step). (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonarlem | ⊢ ( 𝑁 ∈ ω → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) | |
| 2 | ovexd | ⊢ ( 𝑁 ∈ ω → ( 𝑎 ⊼𝑔 𝑏 ) ∈ V ) | |
| 3 | isfmlasuc | ⊢ ( ( suc 𝑁 ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ V ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝑁 ∈ ω → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 6 | fmlasssuc | ⊢ ( suc 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) ⊆ ( Fmla ‘ suc suc 𝑁 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) ⊆ ( Fmla ‘ suc suc 𝑁 ) ) |
| 8 | 7 | sseld | ⊢ ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 9 | 7 | sseld | ⊢ ( 𝑁 ∈ ω → ( 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 10 | 8 9 | anim12d | ⊢ ( 𝑁 ∈ ω → ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 12 | 11 | imim2i | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( 𝑁 ∈ ω → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝑁 ∈ ω ∧ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 15 | gonafv | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) | |
| 16 | 15 | el2v | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 |
| 17 | 16 | a1i | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) |
| 18 | gonafv | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) ) |
| 20 | 1oex | ⊢ 1o ∈ V | |
| 21 | opex | ⊢ 〈 𝑎 , 𝑏 〉 ∈ V | |
| 22 | 20 21 | opth | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ↔ ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) ) |
| 23 | 19 22 | bitrdi | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) ) ) |
| 24 | 23 | adantll | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) ) ) |
| 25 | vex | ⊢ 𝑎 ∈ V | |
| 26 | vex | ⊢ 𝑏 ∈ V | |
| 27 | 25 26 | opth | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ↔ ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ) |
| 28 | eleq1w | ⊢ ( 𝑢 = 𝑎 → ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) | |
| 29 | 28 | equcoms | ⊢ ( 𝑎 = 𝑢 → ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 30 | eleq1w | ⊢ ( 𝑣 = 𝑏 → ( 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) | |
| 31 | 30 | equcoms | ⊢ ( 𝑏 = 𝑣 → ( 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 32 | 29 31 | bi2anan9 | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) |
| 33 | 32 11 | biimtrdi | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 34 | 27 33 | sylbi | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 36 | 35 | com13 | ⊢ ( 𝑁 ∈ ω → ( ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |
| 37 | 36 | impl | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 38 | 24 37 | sylbid | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 39 | 38 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 40 | gonanegoal | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 | |
| 41 | eqneqall | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) | |
| 42 | 40 41 | mpi | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 43 | 42 | a1i | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑖 ∈ ω ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 44 | 43 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 45 | 39 44 | jaod | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 46 | 45 | rexlimdva | ⊢ ( 𝑁 ∈ ω → ( ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) → ( ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 48 | 14 47 | jaod | ⊢ ( ( 𝑁 ∈ ω ∧ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 49 | 5 48 | sylbid | ⊢ ( ( 𝑁 ∈ ω ∧ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 50 | 49 | ex | ⊢ ( 𝑁 ∈ ω → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) ) |