This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for goalr (induction step). (Contributed by AV, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goalrlem | ⊢ ( 𝑁 ∈ ω → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | ⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) | |
| 2 | df-goal | ⊢ ∀𝑔 𝑖 𝑎 = 〈 2o , 〈 𝑖 , 𝑎 〉 〉 | |
| 3 | opex | ⊢ 〈 2o , 〈 𝑖 , 𝑎 〉 〉 ∈ V | |
| 4 | 2 3 | eqeltri | ⊢ ∀𝑔 𝑖 𝑎 ∈ V |
| 5 | isfmlasuc | ⊢ ( ( suc 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ V ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) ) ) ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝑁 ∈ ω → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) ) ) ) |
| 8 | fmlasssuc | ⊢ ( suc 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) ⊆ ( Fmla ‘ suc suc 𝑁 ) ) | |
| 9 | 1 8 | syl | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) ⊆ ( Fmla ‘ suc suc 𝑁 ) ) |
| 10 | 9 | sseld | ⊢ ( 𝑁 ∈ ω → ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 11 | 10 | com12 | ⊢ ( 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑁 ∈ ω → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 12 | 11 | imim2i | ⊢ ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑁 ∈ ω → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑁 ∈ ω → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝑁 ∈ ω ∧ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 15 | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 ) ≠ ∀𝑔 𝑖 𝑎 | |
| 16 | eqneqall | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑖 𝑎 → ( ( 𝑢 ⊼𝑔 𝑣 ) ≠ ∀𝑔 𝑖 𝑎 → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) | |
| 17 | 15 16 | mpi | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑖 𝑎 → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) |
| 18 | 17 | eqcoms | ⊢ ( ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) |
| 19 | 18 | a1i | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 20 | 19 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 21 | df-goal | ⊢ ∀𝑔 𝑗 𝑢 = 〈 2o , 〈 𝑗 , 𝑢 〉 〉 | |
| 22 | 2 21 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ↔ 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑗 , 𝑢 〉 〉 ) |
| 23 | 2oex | ⊢ 2o ∈ V | |
| 24 | opex | ⊢ 〈 𝑖 , 𝑎 〉 ∈ V | |
| 25 | 23 24 | opth | ⊢ ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑗 , 𝑢 〉 〉 ↔ ( 2o = 2o ∧ 〈 𝑖 , 𝑎 〉 = 〈 𝑗 , 𝑢 〉 ) ) |
| 26 | 22 25 | bitri | ⊢ ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ↔ ( 2o = 2o ∧ 〈 𝑖 , 𝑎 〉 = 〈 𝑗 , 𝑢 〉 ) ) |
| 27 | vex | ⊢ 𝑖 ∈ V | |
| 28 | vex | ⊢ 𝑎 ∈ V | |
| 29 | 27 28 | opth | ⊢ ( 〈 𝑖 , 𝑎 〉 = 〈 𝑗 , 𝑢 〉 ↔ ( 𝑖 = 𝑗 ∧ 𝑎 = 𝑢 ) ) |
| 30 | eleq1w | ⊢ ( 𝑢 = 𝑎 → ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) | |
| 31 | 30 | eqcoms | ⊢ ( 𝑎 = 𝑢 → ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 32 | 31 11 | biimtrdi | ⊢ ( 𝑎 = 𝑢 → ( 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) → ( 𝑁 ∈ ω → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |
| 33 | 32 | impcomd | ⊢ ( 𝑎 = 𝑢 → ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 34 | 29 33 | simplbiim | ⊢ ( 〈 𝑖 , 𝑎 〉 = 〈 𝑗 , 𝑢 〉 → ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 35 | 26 34 | simplbiim | ⊢ ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 → ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 36 | 35 | com12 | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) ∧ 𝑗 ∈ ω ) → ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 38 | 37 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 39 | 20 38 | jaod | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 40 | 39 | rexlimdva | ⊢ ( 𝑁 ∈ ω → ( ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 42 | 14 41 | jaod | ⊢ ( ( 𝑁 ∈ ω ∧ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ suc 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑗 𝑢 ) ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 43 | 7 42 | sylbid | ⊢ ( ( 𝑁 ∈ ω ∧ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) |
| 44 | 43 | ex | ⊢ ( 𝑁 ∈ ω → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑁 ) ) ) ) |