This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for A or B being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonar | |- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gonan0 | |- ( ( a |g b ) e. ( Fmla ` N ) -> N =/= (/) ) |
|
| 2 | 1 | adantl | |- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> N =/= (/) ) |
| 3 | nnsuc | |- ( ( N e. _om /\ N =/= (/) ) -> E. x e. _om N = suc x ) |
|
| 4 | suceq | |- ( d = (/) -> suc d = suc (/) ) |
|
| 5 | 4 | fveq2d | |- ( d = (/) -> ( Fmla ` suc d ) = ( Fmla ` suc (/) ) ) |
| 6 | 5 | eleq2d | |- ( d = (/) -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc (/) ) ) ) |
| 7 | 5 | eleq2d | |- ( d = (/) -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc (/) ) ) ) |
| 8 | 5 | eleq2d | |- ( d = (/) -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc (/) ) ) ) |
| 9 | 7 8 | anbi12d | |- ( d = (/) -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 10 | 6 9 | imbi12d | |- ( d = (/) -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) ) |
| 11 | suceq | |- ( d = c -> suc d = suc c ) |
|
| 12 | 11 | fveq2d | |- ( d = c -> ( Fmla ` suc d ) = ( Fmla ` suc c ) ) |
| 13 | 12 | eleq2d | |- ( d = c -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc c ) ) ) |
| 14 | 12 | eleq2d | |- ( d = c -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc c ) ) ) |
| 15 | 12 | eleq2d | |- ( d = c -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc c ) ) ) |
| 16 | 14 15 | anbi12d | |- ( d = c -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) ) |
| 17 | 13 16 | imbi12d | |- ( d = c -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc c ) -> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) ) ) |
| 18 | suceq | |- ( d = suc c -> suc d = suc suc c ) |
|
| 19 | 18 | fveq2d | |- ( d = suc c -> ( Fmla ` suc d ) = ( Fmla ` suc suc c ) ) |
| 20 | 19 | eleq2d | |- ( d = suc c -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc suc c ) ) ) |
| 21 | 19 | eleq2d | |- ( d = suc c -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc suc c ) ) ) |
| 22 | 19 | eleq2d | |- ( d = suc c -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc suc c ) ) ) |
| 23 | 21 22 | anbi12d | |- ( d = suc c -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) |
| 24 | 20 23 | imbi12d | |- ( d = suc c -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc suc c ) -> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) ) |
| 25 | suceq | |- ( d = x -> suc d = suc x ) |
|
| 26 | 25 | fveq2d | |- ( d = x -> ( Fmla ` suc d ) = ( Fmla ` suc x ) ) |
| 27 | 26 | eleq2d | |- ( d = x -> ( ( a |g b ) e. ( Fmla ` suc d ) <-> ( a |g b ) e. ( Fmla ` suc x ) ) ) |
| 28 | 26 | eleq2d | |- ( d = x -> ( a e. ( Fmla ` suc d ) <-> a e. ( Fmla ` suc x ) ) ) |
| 29 | 26 | eleq2d | |- ( d = x -> ( b e. ( Fmla ` suc d ) <-> b e. ( Fmla ` suc x ) ) ) |
| 30 | 28 29 | anbi12d | |- ( d = x -> ( ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) <-> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 31 | 27 30 | imbi12d | |- ( d = x -> ( ( ( a |g b ) e. ( Fmla ` suc d ) -> ( a e. ( Fmla ` suc d ) /\ b e. ( Fmla ` suc d ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 32 | peano1 | |- (/) e. _om |
|
| 33 | ovex | |- ( a |g b ) e. _V |
|
| 34 | isfmlasuc | |- ( ( (/) e. _om /\ ( a |g b ) e. _V ) -> ( ( a |g b ) e. ( Fmla ` suc (/) ) <-> ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) ) |
|
| 35 | 32 33 34 | mp2an | |- ( ( a |g b ) e. ( Fmla ` suc (/) ) <-> ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) ) |
| 36 | eqeq1 | |- ( x = ( a |g b ) -> ( x = ( i e.g j ) <-> ( a |g b ) = ( i e.g j ) ) ) |
|
| 37 | 36 | 2rexbidv | |- ( x = ( a |g b ) -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) ) |
| 38 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
|
| 39 | 37 38 | elrab2 | |- ( ( a |g b ) e. ( Fmla ` (/) ) <-> ( ( a |g b ) e. _V /\ E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) ) |
| 40 | gonafv | |- ( ( a e. _V /\ b e. _V ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
|
| 41 | 40 | el2v | |- ( a |g b ) = <. 1o , <. a , b >. >. |
| 42 | 41 | a1i | |- ( ( i e. _om /\ j e. _om ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 43 | goel | |- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
|
| 44 | 42 43 | eqeq12d | |- ( ( i e. _om /\ j e. _om ) -> ( ( a |g b ) = ( i e.g j ) <-> <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. ) ) |
| 45 | 1oex | |- 1o e. _V |
|
| 46 | opex | |- <. a , b >. e. _V |
|
| 47 | 45 46 | opth | |- ( <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. <-> ( 1o = (/) /\ <. a , b >. = <. i , j >. ) ) |
| 48 | 1n0 | |- 1o =/= (/) |
|
| 49 | eqneqall | |- ( 1o = (/) -> ( 1o =/= (/) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
|
| 50 | 48 49 | mpi | |- ( 1o = (/) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 51 | 50 | adantr | |- ( ( 1o = (/) /\ <. a , b >. = <. i , j >. ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 52 | 47 51 | sylbi | |- ( <. 1o , <. a , b >. >. = <. (/) , <. i , j >. >. -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 53 | 44 52 | biimtrdi | |- ( ( i e. _om /\ j e. _om ) -> ( ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 54 | 53 | rexlimdva | |- ( i e. _om -> ( E. j e. _om ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 55 | 54 | rexlimiv | |- ( E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 56 | 55 | adantl | |- ( ( ( a |g b ) e. _V /\ E. i e. _om E. j e. _om ( a |g b ) = ( i e.g j ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 57 | 39 56 | sylbi | |- ( ( a |g b ) e. ( Fmla ` (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 58 | 41 | a1i | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( a |g b ) = <. 1o , <. a , b >. >. ) |
| 59 | gonafv | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( u |g v ) = <. 1o , <. u , v >. >. ) |
|
| 60 | 58 59 | eqeq12d | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( ( a |g b ) = ( u |g v ) <-> <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. ) ) |
| 61 | 45 46 | opth | |- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. <-> ( 1o = 1o /\ <. a , b >. = <. u , v >. ) ) |
| 62 | vex | |- a e. _V |
|
| 63 | vex | |- b e. _V |
|
| 64 | 62 63 | opth | |- ( <. a , b >. = <. u , v >. <-> ( a = u /\ b = v ) ) |
| 65 | simpl | |- ( ( a = u /\ b = v ) -> a = u ) |
|
| 66 | 65 | equcomd | |- ( ( a = u /\ b = v ) -> u = a ) |
| 67 | 66 | eleq1d | |- ( ( a = u /\ b = v ) -> ( u e. ( Fmla ` (/) ) <-> a e. ( Fmla ` (/) ) ) ) |
| 68 | simpr | |- ( ( a = u /\ b = v ) -> b = v ) |
|
| 69 | 68 | equcomd | |- ( ( a = u /\ b = v ) -> v = b ) |
| 70 | 69 | eleq1d | |- ( ( a = u /\ b = v ) -> ( v e. ( Fmla ` (/) ) <-> b e. ( Fmla ` (/) ) ) ) |
| 71 | 67 70 | anbi12d | |- ( ( a = u /\ b = v ) -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 72 | 64 71 | sylbi | |- ( <. a , b >. = <. u , v >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 73 | 72 | adantl | |- ( ( 1o = 1o /\ <. a , b >. = <. u , v >. ) -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 74 | 61 73 | sylbi | |- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) <-> ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) ) ) |
| 75 | fmlasssuc | |- ( (/) e. _om -> ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) ) |
|
| 76 | 32 75 | ax-mp | |- ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) |
| 77 | 76 | sseli | |- ( a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) |
| 78 | 76 | sseli | |- ( b e. ( Fmla ` (/) ) -> b e. ( Fmla ` suc (/) ) ) |
| 79 | 77 78 | anim12i | |- ( ( a e. ( Fmla ` (/) ) /\ b e. ( Fmla ` (/) ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 80 | 74 79 | biimtrdi | |- ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 81 | 80 | com12 | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( <. 1o , <. a , b >. >. = <. 1o , <. u , v >. >. -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 82 | 60 81 | sylbid | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 83 | 82 | rexlimdva | |- ( u e. ( Fmla ` (/) ) -> ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 84 | gonanegoal | |- ( a |g b ) =/= A.g i u |
|
| 85 | eqneqall | |- ( ( a |g b ) = A.g i u -> ( ( a |g b ) =/= A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
|
| 86 | 84 85 | mpi | |- ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 87 | 86 | a1i | |- ( ( u e. ( Fmla ` (/) ) /\ i e. _om ) -> ( ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 88 | 87 | rexlimdva | |- ( u e. ( Fmla ` (/) ) -> ( E. i e. _om ( a |g b ) = A.g i u -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 89 | 83 88 | jaod | |- ( u e. ( Fmla ` (/) ) -> ( ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) ) |
| 90 | 89 | rexlimiv | |- ( E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 91 | 57 90 | jaoi | |- ( ( ( a |g b ) e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) ( a |g b ) = ( u |g v ) \/ E. i e. _om ( a |g b ) = A.g i u ) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 92 | 35 91 | sylbi | |- ( ( a |g b ) e. ( Fmla ` suc (/) ) -> ( a e. ( Fmla ` suc (/) ) /\ b e. ( Fmla ` suc (/) ) ) ) |
| 93 | gonarlem | |- ( c e. _om -> ( ( ( a |g b ) e. ( Fmla ` suc c ) -> ( a e. ( Fmla ` suc c ) /\ b e. ( Fmla ` suc c ) ) ) -> ( ( a |g b ) e. ( Fmla ` suc suc c ) -> ( a e. ( Fmla ` suc suc c ) /\ b e. ( Fmla ` suc suc c ) ) ) ) ) |
|
| 94 | 10 17 24 31 92 93 | finds | |- ( x e. _om -> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 95 | 94 | adantr | |- ( ( x e. _om /\ N = suc x ) -> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 96 | fveq2 | |- ( N = suc x -> ( Fmla ` N ) = ( Fmla ` suc x ) ) |
|
| 97 | 96 | eleq2d | |- ( N = suc x -> ( ( a |g b ) e. ( Fmla ` N ) <-> ( a |g b ) e. ( Fmla ` suc x ) ) ) |
| 98 | 96 | eleq2d | |- ( N = suc x -> ( a e. ( Fmla ` N ) <-> a e. ( Fmla ` suc x ) ) ) |
| 99 | 96 | eleq2d | |- ( N = suc x -> ( b e. ( Fmla ` N ) <-> b e. ( Fmla ` suc x ) ) ) |
| 100 | 98 99 | anbi12d | |- ( N = suc x -> ( ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) <-> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) |
| 101 | 97 100 | imbi12d | |- ( N = suc x -> ( ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 102 | 101 | adantl | |- ( ( x e. _om /\ N = suc x ) -> ( ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) <-> ( ( a |g b ) e. ( Fmla ` suc x ) -> ( a e. ( Fmla ` suc x ) /\ b e. ( Fmla ` suc x ) ) ) ) ) |
| 103 | 95 102 | mpbird | |- ( ( x e. _om /\ N = suc x ) -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 104 | 103 | rexlimiva | |- ( E. x e. _om N = suc x -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 105 | 3 104 | syl | |- ( ( N e. _om /\ N =/= (/) ) -> ( ( a |g b ) e. ( Fmla ` N ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 106 | 105 | impancom | |- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> ( N =/= (/) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) ) |
| 107 | 2 106 | mpd | |- ( ( N e. _om /\ ( a |g b ) e. ( Fmla ` N ) ) -> ( a e. ( Fmla ` N ) /\ b e. ( Fmla ` N ) ) ) |