This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for A being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goalr | |- ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> a e. ( Fmla ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goaln0 | |- ( A.g i a e. ( Fmla ` N ) -> N =/= (/) ) |
|
| 2 | 1 | adantl | |- ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> N =/= (/) ) |
| 3 | nnsuc | |- ( ( N e. _om /\ N =/= (/) ) -> E. n e. _om N = suc n ) |
|
| 4 | suceq | |- ( x = (/) -> suc x = suc (/) ) |
|
| 5 | 4 | fveq2d | |- ( x = (/) -> ( Fmla ` suc x ) = ( Fmla ` suc (/) ) ) |
| 6 | 5 | eleq2d | |- ( x = (/) -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc (/) ) ) ) |
| 7 | 5 | eleq2d | |- ( x = (/) -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc (/) ) ) ) |
| 8 | 6 7 | imbi12d | |- ( x = (/) -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc (/) ) -> a e. ( Fmla ` suc (/) ) ) ) ) |
| 9 | suceq | |- ( x = y -> suc x = suc y ) |
|
| 10 | 9 | fveq2d | |- ( x = y -> ( Fmla ` suc x ) = ( Fmla ` suc y ) ) |
| 11 | 10 | eleq2d | |- ( x = y -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc y ) ) ) |
| 12 | 10 | eleq2d | |- ( x = y -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc y ) ) ) |
| 13 | 11 12 | imbi12d | |- ( x = y -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc y ) -> a e. ( Fmla ` suc y ) ) ) ) |
| 14 | suceq | |- ( x = suc y -> suc x = suc suc y ) |
|
| 15 | 14 | fveq2d | |- ( x = suc y -> ( Fmla ` suc x ) = ( Fmla ` suc suc y ) ) |
| 16 | 15 | eleq2d | |- ( x = suc y -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc suc y ) ) ) |
| 17 | 15 | eleq2d | |- ( x = suc y -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc suc y ) ) ) |
| 18 | 16 17 | imbi12d | |- ( x = suc y -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc suc y ) -> a e. ( Fmla ` suc suc y ) ) ) ) |
| 19 | suceq | |- ( x = n -> suc x = suc n ) |
|
| 20 | 19 | fveq2d | |- ( x = n -> ( Fmla ` suc x ) = ( Fmla ` suc n ) ) |
| 21 | 20 | eleq2d | |- ( x = n -> ( A.g i a e. ( Fmla ` suc x ) <-> A.g i a e. ( Fmla ` suc n ) ) ) |
| 22 | 20 | eleq2d | |- ( x = n -> ( a e. ( Fmla ` suc x ) <-> a e. ( Fmla ` suc n ) ) ) |
| 23 | 21 22 | imbi12d | |- ( x = n -> ( ( A.g i a e. ( Fmla ` suc x ) -> a e. ( Fmla ` suc x ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) |
| 24 | peano1 | |- (/) e. _om |
|
| 25 | df-goal | |- A.g i a = <. 2o , <. i , a >. >. |
|
| 26 | opex | |- <. 2o , <. i , a >. >. e. _V |
|
| 27 | 25 26 | eqeltri | |- A.g i a e. _V |
| 28 | isfmlasuc | |- ( ( (/) e. _om /\ A.g i a e. _V ) -> ( A.g i a e. ( Fmla ` suc (/) ) <-> ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) ) ) |
|
| 29 | 24 27 28 | mp2an | |- ( A.g i a e. ( Fmla ` suc (/) ) <-> ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) ) |
| 30 | eqeq1 | |- ( x = A.g i a -> ( x = ( k e.g j ) <-> A.g i a = ( k e.g j ) ) ) |
|
| 31 | 30 | 2rexbidv | |- ( x = A.g i a -> ( E. k e. _om E. j e. _om x = ( k e.g j ) <-> E. k e. _om E. j e. _om A.g i a = ( k e.g j ) ) ) |
| 32 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. k e. _om E. j e. _om x = ( k e.g j ) } |
|
| 33 | 31 32 | elrab2 | |- ( A.g i a e. ( Fmla ` (/) ) <-> ( A.g i a e. _V /\ E. k e. _om E. j e. _om A.g i a = ( k e.g j ) ) ) |
| 34 | 25 | a1i | |- ( ( k e. _om /\ j e. _om ) -> A.g i a = <. 2o , <. i , a >. >. ) |
| 35 | goel | |- ( ( k e. _om /\ j e. _om ) -> ( k e.g j ) = <. (/) , <. k , j >. >. ) |
|
| 36 | 34 35 | eqeq12d | |- ( ( k e. _om /\ j e. _om ) -> ( A.g i a = ( k e.g j ) <-> <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. ) ) |
| 37 | 2oex | |- 2o e. _V |
|
| 38 | opex | |- <. i , a >. e. _V |
|
| 39 | 37 38 | opth | |- ( <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. <-> ( 2o = (/) /\ <. i , a >. = <. k , j >. ) ) |
| 40 | 2on0 | |- 2o =/= (/) |
|
| 41 | eqneqall | |- ( 2o = (/) -> ( 2o =/= (/) -> a e. ( Fmla ` suc (/) ) ) ) |
|
| 42 | 40 41 | mpi | |- ( 2o = (/) -> a e. ( Fmla ` suc (/) ) ) |
| 43 | 42 | adantr | |- ( ( 2o = (/) /\ <. i , a >. = <. k , j >. ) -> a e. ( Fmla ` suc (/) ) ) |
| 44 | 39 43 | sylbi | |- ( <. 2o , <. i , a >. >. = <. (/) , <. k , j >. >. -> a e. ( Fmla ` suc (/) ) ) |
| 45 | 36 44 | biimtrdi | |- ( ( k e. _om /\ j e. _om ) -> ( A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 46 | 45 | rexlimdva | |- ( k e. _om -> ( E. j e. _om A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 47 | 46 | rexlimiv | |- ( E. k e. _om E. j e. _om A.g i a = ( k e.g j ) -> a e. ( Fmla ` suc (/) ) ) |
| 48 | 33 47 | simplbiim | |- ( A.g i a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) |
| 49 | gonanegoal | |- ( u |g v ) =/= A.g i a |
|
| 50 | eqneqall | |- ( ( u |g v ) = A.g i a -> ( ( u |g v ) =/= A.g i a -> a e. ( Fmla ` suc (/) ) ) ) |
|
| 51 | 49 50 | mpi | |- ( ( u |g v ) = A.g i a -> a e. ( Fmla ` suc (/) ) ) |
| 52 | 51 | eqcoms | |- ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) |
| 53 | 52 | a1i | |- ( ( u e. ( Fmla ` (/) ) /\ v e. ( Fmla ` (/) ) ) -> ( A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 54 | 53 | rexlimdva | |- ( u e. ( Fmla ` (/) ) -> ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 55 | df-goal | |- A.g k u = <. 2o , <. k , u >. >. |
|
| 56 | 25 55 | eqeq12i | |- ( A.g i a = A.g k u <-> <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. ) |
| 57 | 37 38 | opth | |- ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. <-> ( 2o = 2o /\ <. i , a >. = <. k , u >. ) ) |
| 58 | vex | |- i e. _V |
|
| 59 | vex | |- a e. _V |
|
| 60 | 58 59 | opth | |- ( <. i , a >. = <. k , u >. <-> ( i = k /\ a = u ) ) |
| 61 | eleq1w | |- ( u = a -> ( u e. ( Fmla ` (/) ) <-> a e. ( Fmla ` (/) ) ) ) |
|
| 62 | fmlasssuc | |- ( (/) e. _om -> ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) ) |
|
| 63 | 24 62 | ax-mp | |- ( Fmla ` (/) ) C_ ( Fmla ` suc (/) ) |
| 64 | 63 | sseli | |- ( a e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) |
| 65 | 61 64 | biimtrdi | |- ( u = a -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 66 | 65 | eqcoms | |- ( a = u -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 67 | 60 66 | simplbiim | |- ( <. i , a >. = <. k , u >. -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 68 | 57 67 | simplbiim | |- ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> ( u e. ( Fmla ` (/) ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 69 | 68 | com12 | |- ( u e. ( Fmla ` (/) ) -> ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> a e. ( Fmla ` suc (/) ) ) ) |
| 70 | 69 | adantr | |- ( ( u e. ( Fmla ` (/) ) /\ k e. _om ) -> ( <. 2o , <. i , a >. >. = <. 2o , <. k , u >. >. -> a e. ( Fmla ` suc (/) ) ) ) |
| 71 | 56 70 | biimtrid | |- ( ( u e. ( Fmla ` (/) ) /\ k e. _om ) -> ( A.g i a = A.g k u -> a e. ( Fmla ` suc (/) ) ) ) |
| 72 | 71 | rexlimdva | |- ( u e. ( Fmla ` (/) ) -> ( E. k e. _om A.g i a = A.g k u -> a e. ( Fmla ` suc (/) ) ) ) |
| 73 | 54 72 | jaod | |- ( u e. ( Fmla ` (/) ) -> ( ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) -> a e. ( Fmla ` suc (/) ) ) ) |
| 74 | 73 | rexlimiv | |- ( E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) -> a e. ( Fmla ` suc (/) ) ) |
| 75 | 48 74 | jaoi | |- ( ( A.g i a e. ( Fmla ` (/) ) \/ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) A.g i a = ( u |g v ) \/ E. k e. _om A.g i a = A.g k u ) ) -> a e. ( Fmla ` suc (/) ) ) |
| 76 | 29 75 | sylbi | |- ( A.g i a e. ( Fmla ` suc (/) ) -> a e. ( Fmla ` suc (/) ) ) |
| 77 | goalrlem | |- ( y e. _om -> ( ( A.g i a e. ( Fmla ` suc y ) -> a e. ( Fmla ` suc y ) ) -> ( A.g i a e. ( Fmla ` suc suc y ) -> a e. ( Fmla ` suc suc y ) ) ) ) |
|
| 78 | 8 13 18 23 76 77 | finds | |- ( n e. _om -> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) |
| 79 | 78 | adantr | |- ( ( n e. _om /\ N = suc n ) -> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) |
| 80 | fveq2 | |- ( N = suc n -> ( Fmla ` N ) = ( Fmla ` suc n ) ) |
|
| 81 | 80 | eleq2d | |- ( N = suc n -> ( A.g i a e. ( Fmla ` N ) <-> A.g i a e. ( Fmla ` suc n ) ) ) |
| 82 | 80 | eleq2d | |- ( N = suc n -> ( a e. ( Fmla ` N ) <-> a e. ( Fmla ` suc n ) ) ) |
| 83 | 81 82 | imbi12d | |- ( N = suc n -> ( ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) |
| 84 | 83 | adantl | |- ( ( n e. _om /\ N = suc n ) -> ( ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) <-> ( A.g i a e. ( Fmla ` suc n ) -> a e. ( Fmla ` suc n ) ) ) ) |
| 85 | 79 84 | mpbird | |- ( ( n e. _om /\ N = suc n ) -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) |
| 86 | 85 | rexlimiva | |- ( E. n e. _om N = suc n -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) |
| 87 | 3 86 | syl | |- ( ( N e. _om /\ N =/= (/) ) -> ( A.g i a e. ( Fmla ` N ) -> a e. ( Fmla ` N ) ) ) |
| 88 | 87 | impancom | |- ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> ( N =/= (/) -> a e. ( Fmla ` N ) ) ) |
| 89 | 2 88 | mpd | |- ( ( N e. _om /\ A.g i a e. ( Fmla ` N ) ) -> a e. ( Fmla ` N ) ) |