This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmla0disjsuc | ⊢ ( ( Fmla ‘ ∅ ) ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } | |
| 2 | rabab | ⊢ { 𝑥 ∈ V ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } = { 𝑥 ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } | |
| 3 | 1 2 | eqtri | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } |
| 4 | 3 | ineq1i | ⊢ ( ( Fmla ‘ ∅ ) ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) = ( { 𝑥 ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) |
| 5 | inab | ⊢ ( { 𝑥 ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) = { 𝑥 ∣ ( ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∧ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) } | |
| 6 | goel | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝑗 ∈𝑔 𝑘 ) = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 ) | |
| 7 | 6 | eqeq2d | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ↔ 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 ) ) |
| 8 | 1n0 | ⊢ 1o ≠ ∅ | |
| 9 | 8 | nesymi | ⊢ ¬ ∅ = 1o |
| 10 | 9 | intnanr | ⊢ ¬ ( ∅ = 1o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑢 , 𝑣 〉 ) |
| 11 | gonafv | ⊢ ( ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) | |
| 12 | 11 | el2v | ⊢ ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 |
| 13 | 12 | eqeq2i | ⊢ ( 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | opex | ⊢ 〈 𝑗 , 𝑘 〉 ∈ V | |
| 16 | 14 15 | opth | ⊢ ( 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ↔ ( ∅ = 1o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑢 , 𝑣 〉 ) ) |
| 17 | 13 16 | bitri | ⊢ ( 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ( ∅ = 1o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑢 , 𝑣 〉 ) ) |
| 18 | 10 17 | mtbir | ⊢ ¬ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ( 𝑢 ⊼𝑔 𝑣 ) |
| 19 | eqeq1 | ⊢ ( 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 → ( 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) | |
| 20 | 18 19 | mtbiri | ⊢ ( 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 → ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 21 | 7 20 | biimtrdi | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) → ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) → ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) → ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 24 | 23 | ralrimivw | ⊢ ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) → ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 25 | 2on0 | ⊢ 2o ≠ ∅ | |
| 26 | 25 | nesymi | ⊢ ¬ ∅ = 2o |
| 27 | 26 | orci | ⊢ ( ¬ ∅ = 2o ∨ ¬ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) |
| 28 | 14 15 | opth | ⊢ ( 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ↔ ( ∅ = 2o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) ) |
| 29 | 28 | notbii | ⊢ ( ¬ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ↔ ¬ ( ∅ = 2o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) ) |
| 30 | ianor | ⊢ ( ¬ ( ∅ = 2o ∧ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) ↔ ( ¬ ∅ = 2o ∨ ¬ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) ) | |
| 31 | 29 30 | bitri | ⊢ ( ¬ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ↔ ( ¬ ∅ = 2o ∨ ¬ 〈 𝑗 , 𝑘 〉 = 〈 𝑖 , 𝑢 〉 ) ) |
| 32 | 27 31 | mpbir | ⊢ ¬ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 |
| 33 | eqeq1 | ⊢ ( 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 → ( 𝑥 = ∀𝑔 𝑖 𝑢 ↔ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ∀𝑔 𝑖 𝑢 ) ) | |
| 34 | df-goal | ⊢ ∀𝑔 𝑖 𝑢 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 | |
| 35 | 34 | eqeq2i | ⊢ ( 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = ∀𝑔 𝑖 𝑢 ↔ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ) |
| 36 | 33 35 | bitrdi | ⊢ ( 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 → ( 𝑥 = ∀𝑔 𝑖 𝑢 ↔ 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ) ) |
| 37 | 32 36 | mtbiri | ⊢ ( 𝑥 = 〈 ∅ , 〈 𝑗 , 𝑘 〉 〉 → ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) |
| 38 | 7 37 | biimtrdi | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) → ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 39 | 38 | imp | ⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) → ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) |
| 40 | 39 | adantr | ⊢ ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) → ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) ∧ 𝑖 ∈ ω ) → ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) |
| 42 | 41 | ralrimiva | ⊢ ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) → ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) |
| 43 | 24 42 | jca | ⊢ ( ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) ∧ 𝑢 ∈ ( Fmla ‘ ∅ ) ) → ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 44 | 43 | ralrimiva | ⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) → ∀ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 45 | ralnex | ⊢ ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ¬ ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) | |
| 46 | ralnex | ⊢ ( ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ¬ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) | |
| 47 | 45 46 | anbi12i | ⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 48 | ioran | ⊢ ( ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) | |
| 49 | 47 48 | bitr4i | ⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 50 | 49 | ralbii | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ∀ 𝑢 ∈ ( Fmla ‘ ∅ ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 51 | ralnex | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ ∅ ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) | |
| 52 | 50 51 | bitri | ⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∀ 𝑣 ∈ ( Fmla ‘ ∅ ) ¬ 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 53 | 44 52 | sylib | ⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) ∧ 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 55 | 54 | rexlimdva | ⊢ ( 𝑗 ∈ ω → ( ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 56 | 55 | rexlimiv | ⊢ ( ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 57 | 56 | imori | ⊢ ( ¬ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∨ ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 58 | ianor | ⊢ ( ¬ ( ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∧ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) ↔ ( ¬ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∨ ¬ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) ) | |
| 59 | 57 58 | mpbir | ⊢ ¬ ( ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∧ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) |
| 60 | 59 | abf | ⊢ { 𝑥 ∣ ( ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) ∧ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ) } = ∅ |
| 61 | 5 60 | eqtri | ⊢ ( { 𝑥 ∣ ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω 𝑥 = ( 𝑗 ∈𝑔 𝑘 ) } ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) = ∅ |
| 62 | 4 61 | eqtri | ⊢ ( ( Fmla ‘ ∅ ) ∩ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) = ∅ |