This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpasscan1.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpasscan1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpasscan1.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 2 4 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
| 8 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) |
| 10 | 9 | 3exp2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) ) |
| 12 | 8 11 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) ) |
| 13 | 12 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) ) |
| 14 | 1 2 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 16 | 7 13 15 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( 𝑁 ‘ 𝑋 ) + 𝑌 ) ) = 𝑌 ) |