This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | gex1 | ⊢ ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝑋 ≈ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl2.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | simplr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐸 = 1 ) | |
| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 1 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 5 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 1 2 5 6 | gexid | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 1 5 | mulg1 | ⊢ ( 𝑥 ∈ 𝑋 → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 11 | 4 8 10 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
| 12 | velsn | ⊢ ( 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
| 14 | 13 | ex | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 𝑥 ∈ 𝑋 → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
| 15 | 14 | ssrdv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 16 | 1 6 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 18 | 17 | snssd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → { ( 0g ‘ 𝐺 ) } ⊆ 𝑋 ) |
| 19 | 15 18 | eqssd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) |
| 20 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 21 | 20 | ensn1 | ⊢ { ( 0g ‘ 𝐺 ) } ≈ 1o |
| 22 | 19 21 | eqbrtrdi | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ≈ 1o ) |
| 23 | simpl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐺 ∈ Mnd ) | |
| 24 | 1nn | ⊢ 1 ∈ ℕ | |
| 25 | 24 | a1i | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 1 ∈ ℕ ) |
| 26 | 9 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 27 | en1eqsn | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) | |
| 28 | 16 27 | sylan | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) |
| 29 | 28 | eleq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
| 30 | 29 | biimpa | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
| 31 | 30 12 | sylib | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
| 32 | 26 31 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ∀ 𝑥 ∈ 𝑋 ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 34 | 1 2 5 6 | gexlem2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) → 𝐸 ∈ ( 1 ... 1 ) ) |
| 35 | 23 25 33 34 | syl3anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 ∈ ( 1 ... 1 ) ) |
| 36 | elfz1eq | ⊢ ( 𝐸 ∈ ( 1 ... 1 ) → 𝐸 = 1 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 = 1 ) |
| 38 | 22 37 | impbida | ⊢ ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝑋 ≈ 1o ) ) |