This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | gexid | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexcl.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | gexid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( 𝐸 = 0 → ( 𝐸 · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 6 | 1 4 3 | mulg0 | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
| 7 | 5 6 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 = 0 ) → ( 𝐸 · 𝐴 ) = 0 ) |
| 8 | 7 | adantrr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 𝐸 · 𝐴 ) = 0 ) |
| 9 | oveq1 | ⊢ ( 𝑦 = 𝐸 → ( 𝑦 · 𝑥 ) = ( 𝐸 · 𝑥 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑦 = 𝐸 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝐸 · 𝑥 ) = 0 ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑦 = 𝐸 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) ) |
| 12 | 11 | elrab | ⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( 𝐸 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) ) |
| 13 | 12 | simprbi | ⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐸 · 𝑥 ) = ( 𝐸 · 𝐴 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐸 · 𝑥 ) = 0 ↔ ( 𝐸 · 𝐴 ) = 0 ) ) |
| 16 | 15 | rspcva | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) → ( 𝐸 · 𝐴 ) = 0 ) |
| 17 | 13 16 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → ( 𝐸 · 𝐴 ) = 0 ) |
| 18 | elfvex | ⊢ ( 𝐴 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V ) | |
| 19 | 18 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝑋 → 𝐺 ∈ V ) |
| 20 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | |
| 21 | 1 3 4 2 20 | gexlem1 | ⊢ ( 𝐺 ∈ V → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
| 22 | 19 21 | syl | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
| 23 | 8 17 22 | mpjaodan | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 · 𝐴 ) = 0 ) |