This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl2.1 | |- X = ( Base ` G ) |
|
| gexcl2.2 | |- E = ( gEx ` G ) |
||
| Assertion | gex1 | |- ( G e. Mnd -> ( E = 1 <-> X ~~ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl2.2 | |- E = ( gEx ` G ) |
|
| 3 | simplr | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> E = 1 ) |
|
| 4 | 3 | oveq1d | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 1 ( .g ` G ) x ) ) |
| 5 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | 1 2 5 6 | gexid | |- ( x e. X -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
| 8 | 7 | adantl | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
| 9 | 1 5 | mulg1 | |- ( x e. X -> ( 1 ( .g ` G ) x ) = x ) |
| 10 | 9 | adantl | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
| 11 | 4 8 10 | 3eqtr3rd | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x = ( 0g ` G ) ) |
| 12 | velsn | |- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
|
| 13 | 11 12 | sylibr | |- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
| 14 | 13 | ex | |- ( ( G e. Mnd /\ E = 1 ) -> ( x e. X -> x e. { ( 0g ` G ) } ) ) |
| 15 | 14 | ssrdv | |- ( ( G e. Mnd /\ E = 1 ) -> X C_ { ( 0g ` G ) } ) |
| 16 | 1 6 | mndidcl | |- ( G e. Mnd -> ( 0g ` G ) e. X ) |
| 17 | 16 | adantr | |- ( ( G e. Mnd /\ E = 1 ) -> ( 0g ` G ) e. X ) |
| 18 | 17 | snssd | |- ( ( G e. Mnd /\ E = 1 ) -> { ( 0g ` G ) } C_ X ) |
| 19 | 15 18 | eqssd | |- ( ( G e. Mnd /\ E = 1 ) -> X = { ( 0g ` G ) } ) |
| 20 | fvex | |- ( 0g ` G ) e. _V |
|
| 21 | 20 | ensn1 | |- { ( 0g ` G ) } ~~ 1o |
| 22 | 19 21 | eqbrtrdi | |- ( ( G e. Mnd /\ E = 1 ) -> X ~~ 1o ) |
| 23 | simpl | |- ( ( G e. Mnd /\ X ~~ 1o ) -> G e. Mnd ) |
|
| 24 | 1nn | |- 1 e. NN |
|
| 25 | 24 | a1i | |- ( ( G e. Mnd /\ X ~~ 1o ) -> 1 e. NN ) |
| 26 | 9 | adantl | |- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
| 27 | en1eqsn | |- ( ( ( 0g ` G ) e. X /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
|
| 28 | 16 27 | sylan | |- ( ( G e. Mnd /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
| 29 | 28 | eleq2d | |- ( ( G e. Mnd /\ X ~~ 1o ) -> ( x e. X <-> x e. { ( 0g ` G ) } ) ) |
| 30 | 29 | biimpa | |- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
| 31 | 30 12 | sylib | |- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x = ( 0g ` G ) ) |
| 32 | 26 31 | eqtrd | |- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 33 | 32 | ralrimiva | |- ( ( G e. Mnd /\ X ~~ 1o ) -> A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 34 | 1 2 5 6 | gexlem2 | |- ( ( G e. Mnd /\ 1 e. NN /\ A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) -> E e. ( 1 ... 1 ) ) |
| 35 | 23 25 33 34 | syl3anc | |- ( ( G e. Mnd /\ X ~~ 1o ) -> E e. ( 1 ... 1 ) ) |
| 36 | elfz1eq | |- ( E e. ( 1 ... 1 ) -> E = 1 ) |
|
| 37 | 35 36 | syl | |- ( ( G e. Mnd /\ X ~~ 1o ) -> E = 1 ) |
| 38 | 22 37 | impbida | |- ( G e. Mnd -> ( E = 1 <-> X ~~ 1o ) ) |