This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| Assertion | fullsetcestrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Full 𝐸 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | 1 2 3 4 5 6 7 | funcsetcestrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ) |
| 9 | 1 2 3 4 5 6 7 | funcsetcestrclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 12 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑈 ) |
| 14 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 15 | 14 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 16 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) | |
| 17 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) | |
| 18 | 7 10 11 13 15 16 17 | elestrchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 19 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑎 ) = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑎 ) = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 22 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } = { 〈 ( Base ‘ ndx ) , 𝑎 〉 } | |
| 23 | 22 | 1strbas | ⊢ ( 𝑎 ∈ 𝐶 → 𝑎 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 24 | 23 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 } ) ) |
| 25 | 21 24 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
| 26 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑏 ) = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) |
| 27 | 26 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑏 ) = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 29 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } = { 〈 ( Base ‘ ndx ) , 𝑏 〉 } | |
| 30 | 29 | 1strbas | ⊢ ( 𝑏 ∈ 𝐶 → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 31 | 30 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑏 〉 } ) ) |
| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 33 | 25 32 | feq23d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) | |
| 35 | 34 | ancomd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑏 ∈ 𝐶 ∧ 𝑎 ∈ 𝐶 ) ) |
| 36 | elmapg | ⊢ ( ( 𝑏 ∈ 𝐶 ∧ 𝑎 ∈ 𝐶 ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( 𝑏 ↑m 𝑎 ) ↔ ℎ : 𝑎 ⟶ 𝑏 ) ) |
| 38 | 37 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ℎ ∈ ( 𝑏 ↑m 𝑎 ) ) |
| 39 | equequ2 | ⊢ ( 𝑘 = ℎ → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) | |
| 40 | 39 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) ∧ 𝑘 = ℎ ) → ( ℎ = 𝑘 ↔ ℎ = ℎ ) ) |
| 41 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ℎ = ℎ ) | |
| 42 | 38 40 41 | rspcedvd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) |
| 43 | 1 2 3 4 5 6 | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 44 | 43 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) = 𝑘 ) |
| 45 | 44 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ) → ( ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ℎ = 𝑘 ) ) |
| 46 | 45 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ( ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = 𝑘 ) ) |
| 48 | 42 47 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 49 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 50 | 1 4 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 51 | 2 50 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 52 | 51 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ 𝐶 ↔ 𝑎 ∈ 𝑈 ) ) |
| 53 | 52 | biimpcd | ⊢ ( 𝑎 ∈ 𝐶 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
| 55 | 54 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝑈 ) |
| 56 | 51 | eleq2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈 ) ) |
| 57 | 56 | biimpcd | ⊢ ( 𝑏 ∈ 𝐶 → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 58 | 57 | adantl | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝜑 → 𝑏 ∈ 𝑈 ) ) |
| 59 | 58 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝑈 ) |
| 60 | 1 10 49 55 59 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) = ( 𝑏 ↑m 𝑎 ) ) |
| 61 | 60 | rexeqdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ( ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 𝑏 ↑m 𝑎 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 63 | 48 62 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) ∧ ℎ : 𝑎 ⟶ 𝑏 ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 64 | 63 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : 𝑎 ⟶ 𝑏 → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 65 | 33 64 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ : ( Base ‘ ( 𝐹 ‘ 𝑎 ) ) ⟶ ( Base ‘ ( 𝐹 ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 66 | 18 65 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) → ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) |
| 67 | 66 | ralrimiv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) |
| 68 | dffo3 | ⊢ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ ℎ ∈ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ∃ 𝑘 ∈ ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) ℎ = ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑘 ) ) ) | |
| 69 | 9 67 68 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 70 | 69 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 71 | 2 11 49 | isfull2 | ⊢ ( 𝐹 ( 𝑆 Full 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝑆 Func 𝐸 ) 𝐺 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑆 ) 𝑏 ) –onto→ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 | 8 70 71 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Full 𝐸 ) 𝐺 ) |