This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 6 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| Assertion | funcsetcestrclem6 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | 1 2 3 4 5 6 | funcsetcestrclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) ) |
| 10 | fvresi | ⊢ ( 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) → ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) = 𝐻 ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ‘ 𝐻 ) = 𝐻 ) |
| 12 | 9 11 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝐻 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |