This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| Assertion | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) |
| 5 | opeq2 | ⊢ ( 𝑥 = 𝑋 → 〈 ( Base ‘ ndx ) , 𝑥 〉 = 〈 ( Base ‘ ndx ) , 𝑋 〉 ) | |
| 6 | 5 | sneqd | ⊢ ( 𝑥 = 𝑋 → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) ∧ 𝑥 = 𝑋 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) | |
| 9 | snex | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ V | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ∈ V ) |
| 11 | 4 7 8 10 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |