This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| Assertion | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | catstr | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 | |
| 4 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 5 | snsstp1 | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } | |
| 6 | 3 4 5 | strfv | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) | |
| 10 | 1 2 8 9 | setcval | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( 𝑧 ↑m ( 2nd ‘ 𝑣 ) ) , 𝑓 ∈ ( ( 2nd ‘ 𝑣 ) ↑m ( 1st ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
| 12 | 7 11 | eqtr4d | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |