This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| estrchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| estrchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| estrchom.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | ||
| estrchom.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | elestrchom | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | estrchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | estrchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | estrchom.a | ⊢ 𝐴 = ( Base ‘ 𝑋 ) | |
| 7 | estrchom.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 8 | 1 2 3 4 5 6 7 | estrchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝐵 ↑m 𝐴 ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 10 | 7 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 12 | 6 | fvexi | ⊢ 𝐴 ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 14 | 11 13 | elmapd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
| 15 | 9 14 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |