This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 8 for funcsetcestrc . (Contributed by AV, 28-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| Assertion | funcsetcestrclem8 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | funcsetcestrc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 8 | f1oi | ⊢ ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) –1-1-onto→ ( 𝑌 ↑m 𝑋 ) | |
| 9 | f1of | ⊢ ( ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) –1-1-onto→ ( 𝑌 ↑m 𝑋 ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( 𝑌 ↑m 𝑋 ) ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( 𝑌 ↑m 𝑋 ) ) |
| 11 | elmapi | ⊢ ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ 𝑌 ) | |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) | |
| 13 | 12 | ancomd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) ) |
| 14 | elmapg | ⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ 𝑌 ) ) |
| 16 | 15 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ) |
| 17 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 19 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } = { 〈 ( Base ‘ ndx ) , 𝑌 〉 } | |
| 20 | 19 | 1strbas | ⊢ ( 𝑌 ∈ 𝐶 → 𝑌 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) ) |
| 21 | 20 | eqcomd | ⊢ ( 𝑌 ∈ 𝐶 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑌 〉 } ) = 𝑌 ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 24 | 23 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 25 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 27 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } = { 〈 ( Base ‘ ndx ) , 𝑋 〉 } | |
| 28 | 27 | 1strbas | ⊢ ( 𝑋 ∈ 𝐶 → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝑋 〉 } ) ) |
| 30 | 26 29 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 31 | 30 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 32 | 24 31 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( 𝑌 ↑m 𝑋 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( 𝑌 ↑m 𝑋 ) ) |
| 34 | 16 33 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑓 : 𝑋 ⟶ 𝑌 ) → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 : 𝑋 ⟶ 𝑌 → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 36 | 11 35 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) → 𝑓 ∈ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 37 | 36 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑌 ↑m 𝑋 ) ⊆ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 38 | 10 37 | fssd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 39 | 1 2 3 4 5 6 | funcsetcestrclem5 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑌 ↑m 𝑋 ) ) ) |
| 40 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑈 ∈ WUni ) |
| 41 | eqid | ⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) | |
| 42 | 1 4 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 43 | 2 42 | eqtr4id | ⊢ ( 𝜑 → 𝐶 = 𝑈 ) |
| 44 | 43 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ 𝑈 ) ) |
| 45 | 44 | biimpd | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → 𝑋 ∈ 𝑈 ) ) |
| 46 | 45 | adantrd | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑋 ∈ 𝑈 ) ) |
| 47 | 46 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝑈 ) |
| 48 | 43 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 ↔ 𝑌 ∈ 𝑈 ) ) |
| 49 | 48 | biimpd | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → 𝑌 ∈ 𝑈 ) ) |
| 50 | 49 | adantld | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ∈ 𝑈 ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝑈 ) |
| 52 | 1 40 41 47 51 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 53 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 54 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 55 | 54 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 56 | 1 2 3 4 5 | funcsetcestrclem2 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 57 | 56 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 58 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) | |
| 59 | eqid | ⊢ ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) = ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) | |
| 60 | 7 40 53 55 57 58 59 | estrchom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) = ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 61 | 39 52 60 | feq123d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ↔ ( I ↾ ( 𝑌 ↑m 𝑋 ) ) : ( 𝑌 ↑m 𝑋 ) ⟶ ( ( Base ‘ ( 𝐹 ‘ 𝑌 ) ) ↑m ( Base ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 62 | 38 61 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑆 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |