This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a finite sum of converging sequences. Note that C ( k ) is a collection of functions with implicit parameter k , each of which converges to D ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrlim.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| fsumrlim.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fsumrlim.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) | ||
| fsumrlim.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) | ||
| Assertion | fsumrlim | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrlim.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | fsumrlim.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | fsumrlim.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) | |
| 4 | fsumrlim.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) | |
| 5 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) | |
| 7 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) | |
| 8 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = 0 ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 11 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ∅ 𝐷 ) | |
| 12 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐷 = 0 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐷 = 0 ) |
| 14 | 10 13 | breq12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
| 15 | 6 14 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) ) |
| 17 | sseq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵 ) ) | |
| 18 | sumeq1 | ⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝑦 𝐶 ) | |
| 19 | 18 | mpteq2dv | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ) |
| 20 | sumeq1 | ⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝑦 𝐷 ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
| 22 | 17 21 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) ) ) |
| 24 | sseq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐵 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) | |
| 25 | sumeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) | |
| 26 | 25 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ) |
| 27 | sumeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) | |
| 28 | 26 27 | breq12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
| 29 | 24 28 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 31 | sseq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵 ) ) | |
| 32 | sumeq1 | ⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 33 | 32 | mpteq2dv | ⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 34 | sumeq1 | ⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐷 = Σ 𝑘 ∈ 𝐵 𝐷 ) | |
| 35 | 33 34 | breq12d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| 36 | 31 35 | imbi12d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ↔ ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
| 37 | 36 | imbi2d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) ) |
| 38 | 0cn | ⊢ 0 ∈ ℂ | |
| 39 | rlimconst | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) | |
| 40 | 1 38 39 | sylancl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) |
| 41 | 40 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ⇝𝑟 0 ) ) |
| 42 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 43 | sstr | ⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) → 𝑦 ⊆ 𝐵 ) | |
| 44 | 42 43 | mpan | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → 𝑦 ⊆ 𝐵 ) |
| 45 | 44 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) |
| 46 | sumex | ⊢ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V | |
| 47 | 46 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ∈ V ) |
| 48 | simprr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) | |
| 49 | 48 | unssbd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → { 𝑧 } ⊆ 𝐵 ) |
| 50 | vex | ⊢ 𝑧 ∈ V | |
| 51 | 50 | snss | ⊢ ( 𝑧 ∈ 𝐵 ↔ { 𝑧 } ⊆ 𝐵 ) |
| 52 | 49 51 | sylibr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 54 | 3 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 55 | 54 4 | rlimmptrcl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 56 | 55 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 57 | 56 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 58 | 57 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 59 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 | |
| 60 | 59 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 61 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 62 | 61 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 63 | 60 62 | rspc | ⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 64 | 53 58 63 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 65 | 64 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 67 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 | |
| 68 | 67 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 69 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑥 = 𝑤 → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 71 | 68 70 | rspc | ⊢ ( 𝑤 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 72 | 66 71 | mpan9 | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 73 | 72 | elexd | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ∧ 𝑤 ∈ 𝐴 ) → ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ V ) |
| 74 | nfcv | ⊢ Ⅎ 𝑤 Σ 𝑘 ∈ 𝑦 𝐶 | |
| 75 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 76 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 | |
| 77 | 75 76 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
| 78 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) | |
| 79 | 78 | sumeq2sdv | ⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝑦 𝐶 = Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 80 | 74 77 79 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 81 | simpr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) | |
| 82 | 80 81 | eqbrtrrid | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) |
| 83 | nfcv | ⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 | |
| 84 | 83 67 69 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 85 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| 87 | nfcv | ⊢ Ⅎ 𝑘 𝐴 | |
| 88 | 87 59 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 89 | nfcv | ⊢ Ⅎ 𝑘 ⇝𝑟 | |
| 90 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 | |
| 91 | 88 89 90 | nfbr | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 |
| 92 | 61 | mpteq2dv | ⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 93 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) | |
| 94 | 92 93 | breq12d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 95 | 91 94 | rspc | ⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 96 | 52 86 95 | sylc | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 97 | 96 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 98 | 84 97 | eqbrtrrid | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ⇝𝑟 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 99 | 47 73 82 98 | rlimadd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ⇝𝑟 ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 100 | simprl | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 101 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 102 | 100 101 | sylibr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 103 | 102 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 104 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 105 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 106 | 105 48 | ssfid | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 108 | 48 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 109 | 108 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 110 | 109 57 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐶 ∈ ℂ ) |
| 111 | 103 104 107 110 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) ) |
| 112 | csbeq1a | ⊢ ( 𝑘 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑘 ⦌ 𝐶 ) | |
| 113 | nfcv | ⊢ Ⅎ 𝑤 𝐶 | |
| 114 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐶 | |
| 115 | 112 113 114 | cbvsum | ⊢ Σ 𝑘 ∈ { 𝑧 } 𝐶 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
| 116 | csbeq1 | ⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 117 | 116 | sumsn | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 118 | 53 64 117 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 119 | 115 118 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑧 } 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 120 | 119 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 121 | 111 120 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 122 | 121 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 123 | 122 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 124 | nfcv | ⊢ Ⅎ 𝑤 ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 125 | nfcv | ⊢ Ⅎ 𝑥 + | |
| 126 | 77 125 67 | nfov | ⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 127 | 79 69 | oveq12d | ⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 128 | 124 126 127 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 129 | 123 128 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑤 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 + ⦋ 𝑤 / 𝑥 ⦌ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 130 | eqidd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 131 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) | |
| 132 | 4 131 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 133 | 132 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 134 | 108 133 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐷 ∈ ℂ ) |
| 135 | 102 130 106 134 | fsumsplit | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) ) |
| 136 | csbeq1a | ⊢ ( 𝑘 = 𝑤 → 𝐷 = ⦋ 𝑤 / 𝑘 ⦌ 𝐷 ) | |
| 137 | nfcv | ⊢ Ⅎ 𝑤 𝐷 | |
| 138 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐷 | |
| 139 | 136 137 138 | cbvsum | ⊢ Σ 𝑘 ∈ { 𝑧 } 𝐷 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 |
| 140 | 133 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ ) |
| 141 | 90 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ |
| 142 | 93 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐷 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
| 143 | 141 142 | rspc | ⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) ) |
| 144 | 52 140 143 | sylc | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) |
| 145 | csbeq1 | ⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) | |
| 146 | 145 | sumsn | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 147 | 52 144 146 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 148 | 139 147 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐷 = ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) |
| 149 | 148 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( Σ 𝑘 ∈ 𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 150 | 135 149 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 151 | 150 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘 ∈ 𝑦 𝐷 + ⦋ 𝑧 / 𝑘 ⦌ 𝐷 ) ) |
| 152 | 99 129 151 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) |
| 153 | 152 | ex | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) |
| 154 | 153 | expr | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 155 | 154 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 156 | 45 155 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) |
| 157 | 156 | expcom | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 158 | 157 | a2d | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 159 | 158 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) ) |
| 160 | 16 23 30 37 41 159 | findcard2s | ⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) ) |
| 161 | 2 160 | mpcom | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| 162 | 5 161 | mpi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ 𝐵 𝐷 ) |