This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite sum of eventually bounded functions (where the index set B does not depend on x ) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016) (Proof shortened by Mario Carneiro, 22-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumo1.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| fsumo1.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fsumo1.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) | ||
| fsumo1.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) | ||
| Assertion | fsumo1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumo1.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | fsumo1.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | fsumo1.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑉 ) | |
| 4 | fsumo1.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) | |
| 5 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) | |
| 7 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) | |
| 8 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐶 = 0 ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) ) |
| 12 | 6 11 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ↔ ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) ) ) ) |
| 14 | sseq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵 ) ) | |
| 15 | sumeq1 | ⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝑦 𝐶 ) | |
| 16 | 15 | mpteq2dv | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) |
| 18 | 14 17 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ↔ ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 20 | sseq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐵 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) | |
| 21 | sumeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) | |
| 22 | 21 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) |
| 24 | 20 23 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 26 | sseq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵 ) ) | |
| 27 | sumeq1 | ⊢ ( 𝑤 = 𝐵 → Σ 𝑘 ∈ 𝑤 𝐶 = Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 28 | 27 | mpteq2dv | ⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| 29 | 28 | eleq1d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) ) |
| 30 | 26 29 | imbi12d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ↔ ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑤 𝐶 ) ∈ 𝑂(1) ) ) ↔ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 32 | 0cn | ⊢ 0 ∈ ℂ | |
| 33 | o1const | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) | |
| 34 | 1 32 33 | sylancl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) |
| 35 | 34 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 0 ) ∈ 𝑂(1) ) ) |
| 36 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 37 | sstr | ⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) → 𝑦 ⊆ 𝐵 ) | |
| 38 | 36 37 | mpan | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → 𝑦 ⊆ 𝐵 ) |
| 39 | 38 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) |
| 40 | simprl | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 41 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 44 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 45 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 46 | simprr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) | |
| 47 | 45 46 | ssfid | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 49 | 46 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 50 | 49 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐵 ) |
| 51 | 3 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 52 | 51 4 | o1mptrcl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 53 | 52 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 54 | 53 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 55 | 50 54 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐶 ∈ ℂ ) |
| 56 | 43 44 48 55 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) ) |
| 57 | csbeq1a | ⊢ ( 𝑘 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑘 ⦌ 𝐶 ) | |
| 58 | nfcv | ⊢ Ⅎ 𝑤 𝐶 | |
| 59 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑤 / 𝑘 ⦌ 𝐶 | |
| 60 | 57 58 59 | cbvsum | ⊢ Σ 𝑘 ∈ { 𝑧 } 𝐶 = Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 |
| 61 | 46 | unssbd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → { 𝑧 } ⊆ 𝐵 ) |
| 62 | vex | ⊢ 𝑧 ∈ V | |
| 63 | 62 | snss | ⊢ ( 𝑧 ∈ 𝐵 ↔ { 𝑧 } ⊆ 𝐵 ) |
| 64 | 61 63 | sylibr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 66 | 54 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 67 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 | |
| 68 | 67 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 69 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 71 | 68 70 | rspc | ⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 72 | 65 66 71 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 73 | csbeq1 | ⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) | |
| 74 | 73 | sumsn | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 75 | 65 72 74 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑤 ∈ { 𝑧 } ⦋ 𝑤 / 𝑘 ⦌ 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 76 | 60 75 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑧 } 𝐶 = ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 77 | 76 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( Σ 𝑘 ∈ 𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 78 | 56 77 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 79 | 78 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 80 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐴 ⊆ ℝ ) |
| 81 | reex | ⊢ ℝ ∈ V | |
| 82 | 81 | ssex | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 83 | 80 82 | syl | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐴 ∈ V ) |
| 84 | sumex | ⊢ Σ 𝑘 ∈ 𝑦 𝐶 ∈ V | |
| 85 | 84 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝑦 𝐶 ∈ V ) |
| 86 | eqidd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ) | |
| 87 | eqidd | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) | |
| 88 | 83 85 72 86 87 | offval2 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( Σ 𝑘 ∈ 𝑦 𝐶 + ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 89 | 79 88 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 90 | 89 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ) |
| 91 | id | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) | |
| 92 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |
| 94 | nfcv | ⊢ Ⅎ 𝑘 𝐴 | |
| 95 | 94 67 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) |
| 96 | 95 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ∈ 𝑂(1) |
| 97 | 69 | mpteq2dv | ⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) |
| 98 | 97 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ∈ 𝑂(1) ) ) |
| 99 | 96 98 | rspc | ⊢ ( 𝑧 ∈ 𝐵 → ( ∀ 𝑘 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ∈ 𝑂(1) ) ) |
| 100 | 64 93 99 | sylc | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ∈ 𝑂(1) ) |
| 101 | o1add | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ∈ 𝑂(1) ) | |
| 102 | 91 100 101 | syl2anr | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐶 ) ) ∈ 𝑂(1) ) |
| 103 | 90 102 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) |
| 104 | 103 | ex | ⊢ ( ( 𝜑 ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) |
| 105 | 104 | expr | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 106 | 105 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 107 | 39 106 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 108 | 107 | expcom | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 109 | 108 | a2d | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 110 | 109 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝑦 𝐶 ) ∈ 𝑂(1) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ∈ 𝑂(1) ) ) ) ) |
| 111 | 13 19 25 31 35 110 | findcard2s | ⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) ) ) |
| 112 | 2 111 | mpcom | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) ) |
| 113 | 5 112 | mpi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ Σ 𝑘 ∈ 𝐵 𝐶 ) ∈ 𝑂(1) ) |