This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimconst | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | 2 | subidd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 4 | 3 | fveq2d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
| 5 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = 0 ) |
| 7 | rpgt0 | ⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) | |
| 8 | 7 | ad2antlr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 0 < 𝑦 ) |
| 9 | 6 8 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) |
| 10 | 9 | a1d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
| 11 | 10 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑥 ∈ 𝐴 ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
| 12 | breq1 | ⊢ ( 𝑧 = 0 → ( 𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥 ) ) | |
| 13 | 12 | rspceaimv | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 0 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
| 14 | 1 11 13 | sylancr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) |
| 16 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 18 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℝ ) | |
| 19 | simpr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 20 | 17 18 19 | rlim2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐵 ) ) < 𝑦 ) ) ) |
| 21 | 15 20 | mpbird | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐵 ) |