This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| rlimadd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| rlimadd.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | ||
| rlimadd.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | ||
| Assertion | rlimadd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ⇝𝑟 ( 𝐷 + 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | rlimadd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 3 | rlimadd.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | |
| 4 | rlimadd.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | |
| 5 | 1 3 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 | 2 4 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 7 | 5 6 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 8 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 10 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐸 ∈ ℂ ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 12 | 9 11 | addcld | ⊢ ( 𝜑 → ( 𝐷 + 𝐸 ) ∈ ℂ ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 14 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐷 ∈ ℂ ) |
| 15 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐸 ∈ ℂ ) |
| 16 | addcn2 | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐷 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 + 𝑣 ) − ( 𝐷 + 𝐸 ) ) ) < 𝑦 ) ) | |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐷 ) ) < 𝑧 ∧ ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝑢 + 𝑣 ) − ( 𝐷 + 𝐸 ) ) ) < 𝑦 ) ) |
| 18 | 5 6 7 12 3 4 17 | rlimcn3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ⇝𝑟 ( 𝐷 + 𝐸 ) ) |