This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Fan Zheng, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1add | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 2 | addcl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 + 𝑛 ) ∈ ℂ ) | |
| 3 | simp2l | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑚 ∈ ℂ ) | |
| 4 | simp2r | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑛 ∈ ℂ ) | |
| 5 | 3 4 | addcld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( 𝑚 + 𝑛 ) ∈ ℂ ) |
| 6 | 5 | abscld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ∈ ℝ ) |
| 7 | 3 | abscld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
| 8 | 4 | abscld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
| 9 | 7 8 | readdcld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ∈ ℝ ) |
| 10 | simp1l | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑥 ∈ ℝ ) | |
| 11 | simp1r | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) | |
| 12 | 10 11 | readdcld | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 13 | 3 4 | abstrid | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ) |
| 14 | simp3l | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑚 ) ≤ 𝑥 ) | |
| 15 | simp3r | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ 𝑛 ) ≤ 𝑦 ) | |
| 16 | 7 8 10 11 14 15 | le2addd | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( ( abs ‘ 𝑚 ) + ( abs ‘ 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) |
| 17 | 6 9 12 13 16 | letrd | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ∧ ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) |
| 18 | 17 | 3expia | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑚 ) ≤ 𝑥 ∧ ( abs ‘ 𝑛 ) ≤ 𝑦 ) → ( abs ‘ ( 𝑚 + 𝑛 ) ) ≤ ( 𝑥 + 𝑦 ) ) ) |
| 19 | 1 2 18 | o1of2 | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝑂(1) ) |