This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two well-founded classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013) (Proof shortened by Wolf Lammen, 4-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| Assertion | frxp | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frxp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| 2 | ssn0 | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 3 | xpnz | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 4 | 3 | biimpri | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐵 ≠ ∅ ) |
| 6 | 2 5 | syl | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
| 7 | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) | |
| 8 | dmss | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) | |
| 9 | sseq2 | ⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ↔ dom 𝑠 ⊆ 𝐴 ) ) | |
| 10 | 8 9 | imbitrid | ⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝐵 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝐵 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
| 13 | 6 12 | syldan | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
| 14 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 15 | relss | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel 𝑠 ) ) | |
| 16 | 14 15 | mpi | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → Rel 𝑠 ) |
| 17 | reldm0 | ⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
| 19 | 18 | necon3bid | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
| 20 | 19 | biimpa | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ≠ ∅ ) |
| 21 | 13 20 | jca | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) |
| 22 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ) | |
| 23 | vex | ⊢ 𝑠 ∈ V | |
| 24 | 23 | dmex | ⊢ dom 𝑠 ∈ V |
| 25 | sseq1 | ⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴 ) ) | |
| 26 | neeq1 | ⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑣 = dom 𝑠 → ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) ↔ ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) ) |
| 28 | raleq | ⊢ ( 𝑣 = dom 𝑠 → ( ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) | |
| 29 | 28 | rexeqbi1dv | ⊢ ( 𝑣 = dom 𝑠 → ( ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 30 | 27 29 | imbi12d | ⊢ ( 𝑣 = dom 𝑠 → ( ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ↔ ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) ) |
| 31 | 24 30 | spcv | ⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 32 | 22 31 | sylbi | ⊢ ( 𝑅 Fr 𝐴 → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 33 | 21 32 | syl5 | ⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 35 | imassrn | ⊢ ( 𝑠 “ { 𝑎 } ) ⊆ ran 𝑠 | |
| 36 | xpeq0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) | |
| 37 | 36 | biimpri | ⊢ ( ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 38 | 37 | orcs | ⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 39 | sseq2 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ↔ 𝑠 ⊆ ∅ ) ) | |
| 40 | ss0 | ⊢ ( 𝑠 ⊆ ∅ → 𝑠 = ∅ ) | |
| 41 | 39 40 | biimtrdi | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
| 42 | 38 41 | syl | ⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
| 43 | rneq | ⊢ ( 𝑠 = ∅ → ran 𝑠 = ran ∅ ) | |
| 44 | rn0 | ⊢ ran ∅ = ∅ | |
| 45 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 46 | 44 45 | eqsstri | ⊢ ran ∅ ⊆ 𝐵 |
| 47 | 43 46 | eqsstrdi | ⊢ ( 𝑠 = ∅ → ran 𝑠 ⊆ 𝐵 ) |
| 48 | 42 47 | syl6 | ⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 49 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) | |
| 50 | rnss | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) | |
| 51 | sseq2 | ⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ↔ ran 𝑠 ⊆ 𝐵 ) ) | |
| 52 | 50 51 | imbitrid | ⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 53 | 49 52 | syl | ⊢ ( 𝐴 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 54 | 48 53 | pm2.61ine | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) |
| 55 | 35 54 | sstrid | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
| 56 | vex | ⊢ 𝑎 ∈ V | |
| 57 | 56 | eldm | ⊢ ( 𝑎 ∈ dom 𝑠 ↔ ∃ 𝑏 𝑎 𝑠 𝑏 ) |
| 58 | vex | ⊢ 𝑏 ∈ V | |
| 59 | 56 58 | elimasn | ⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) |
| 60 | df-br | ⊢ ( 𝑎 𝑠 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) | |
| 61 | 59 60 | bitr4i | ⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 𝑎 𝑠 𝑏 ) |
| 62 | ne0i | ⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) | |
| 63 | 61 62 | sylbir | ⊢ ( 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 64 | 63 | exlimiv | ⊢ ( ∃ 𝑏 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 65 | 57 64 | sylbi | ⊢ ( 𝑎 ∈ dom 𝑠 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 66 | df-fr | ⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ) | |
| 67 | 23 | imaex | ⊢ ( 𝑠 “ { 𝑎 } ) ∈ V |
| 68 | sseq1 | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ⊆ 𝐵 ↔ ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) ) | |
| 69 | neeq1 | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ≠ ∅ ↔ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) | |
| 70 | 68 69 | anbi12d | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) ↔ ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) ) |
| 71 | raleq | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) | |
| 72 | 71 | rexeqbi1dv | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 73 | 70 72 | imbi12d | ⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ↔ ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) ) |
| 74 | 67 73 | spcv | ⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 75 | 66 74 | sylbi | ⊢ ( 𝑆 Fr 𝐵 → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 76 | 55 65 75 | syl2ani | ⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 77 | 1stdm | ⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ( 1st ‘ 𝑤 ) ∈ dom 𝑠 ) | |
| 78 | breq1 | ⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( 𝑐 𝑅 𝑎 ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) | |
| 79 | 78 | notbid | ⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( ¬ 𝑐 𝑅 𝑎 ↔ ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 80 | 79 | rspccv | ⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( 1st ‘ 𝑤 ) ∈ dom 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 81 | 77 80 | syl5 | ⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 82 | 81 | expd | ⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) ) |
| 83 | 82 | impcom | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 84 | 83 | adantr | ⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 85 | elrel | ⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) | |
| 86 | 85 | ex | ⊢ ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
| 87 | 86 | adantr | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
| 88 | vex | ⊢ 𝑢 ∈ V | |
| 89 | 56 88 | elimasn | ⊢ ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) |
| 90 | breq1 | ⊢ ( 𝑑 = 𝑢 → ( 𝑑 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) | |
| 91 | 90 | notbid | ⊢ ( 𝑑 = 𝑢 → ( ¬ 𝑑 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
| 92 | 91 | rspccv | ⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) → ¬ 𝑢 𝑆 𝑏 ) ) |
| 93 | 89 92 | biimtrrid | ⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
| 94 | 93 | adantl | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
| 95 | opeq1 | ⊢ ( 𝑡 = 𝑎 → 〈 𝑡 , 𝑢 〉 = 〈 𝑎 , 𝑢 〉 ) | |
| 96 | 95 | eleq1d | ⊢ ( 𝑡 = 𝑎 → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) ) |
| 97 | 96 | imbi1d | ⊢ ( 𝑡 = 𝑎 → ( ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ↔ ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 98 | 94 97 | imbitrrid | ⊢ ( 𝑡 = 𝑎 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 99 | 98 | com3l | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 100 | eleq1 | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝑤 ∈ 𝑠 ↔ 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ) ) | |
| 101 | vex | ⊢ 𝑡 ∈ V | |
| 102 | 101 88 | op1std | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 1st ‘ 𝑤 ) = 𝑡 ) |
| 103 | 102 | eqeq1d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 ↔ 𝑡 = 𝑎 ) ) |
| 104 | 101 88 | op2ndd | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 2nd ‘ 𝑤 ) = 𝑢 ) |
| 105 | 104 | breq1d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) |
| 106 | 105 | notbid | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
| 107 | 103 106 | imbi12d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 108 | 100 107 | imbi12d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) ) |
| 109 | 99 108 | imbitrrid | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 110 | 109 | exlimivv | ⊢ ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 111 | 110 | com3l | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 112 | 87 111 | mpdd | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 113 | 112 | adantlr | ⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 114 | 84 113 | jcad | ⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 115 | 114 | ralrimiv | ⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 116 | 115 | ex | ⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 117 | 16 116 | sylan | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 118 | olc | ⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) | |
| 119 | 118 | ralimi | ⊢ ( ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 120 | 117 119 | syl6 | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
| 121 | ianor | ⊢ ( ¬ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) | |
| 122 | vex | ⊢ 𝑤 ∈ V | |
| 123 | opex | ⊢ 〈 𝑎 , 𝑏 〉 ∈ V | |
| 124 | eleq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ 𝑤 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 125 | 124 | anbi1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
| 126 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑤 ) ) | |
| 127 | 126 | breq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ) ) |
| 128 | 126 | eqeq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ) ) |
| 129 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑤 ) ) | |
| 130 | 129 | breq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) |
| 131 | 128 130 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) |
| 132 | 127 131 | orbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) |
| 133 | 125 132 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) ) |
| 134 | eleq1 | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 135 | 134 | anbi2d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
| 136 | 56 58 | op1std | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 1st ‘ 𝑦 ) = 𝑎 ) |
| 137 | 136 | breq2d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 138 | 136 | eqeq2d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = 𝑎 ) ) |
| 139 | 56 58 | op2ndd | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
| 140 | 139 | breq2d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 141 | 138 140 | anbi12d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 142 | 137 141 | orbi12d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 143 | 135 142 | anbi12d | ⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
| 144 | 122 123 133 143 1 | brab | ⊢ ( 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 145 | 121 144 | xchnxbir | ⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 146 | ioran | ⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) | |
| 147 | ianor | ⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) | |
| 148 | pm4.62 | ⊢ ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) | |
| 149 | 147 148 | bitr4i | ⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 150 | 149 | anbi2i | ⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 151 | 146 150 | bitri | ⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 152 | 151 | orbi2i | ⊢ ( ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 153 | 145 152 | bitri | ⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 154 | 153 | ralbii | ⊢ ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 155 | 120 154 | imbitrrdi | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 156 | 155 | reximdv | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 157 | 156 | ex | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 158 | 157 | com23 | ⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 159 | 158 | adantr | ⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 160 | 76 159 | sylcom | ⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 161 | 160 | impl | ⊢ ( ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 162 | 161 | expimpd | ⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 163 | 162 | 3adant3 | ⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 164 | resss | ⊢ ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 | |
| 165 | df-rex | ⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) | |
| 166 | eqid | ⊢ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 | |
| 167 | eqeq1 | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ) ) | |
| 168 | breq2 | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑤 𝑇 𝑧 ↔ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) | |
| 169 | 168 | notbid | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ¬ 𝑤 𝑇 𝑧 ↔ ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 170 | 169 | ralbidv | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 171 | 170 | anbi2d | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 172 | 167 171 | anbi12d | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 173 | 123 172 | spcev | ⊢ ( ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 174 | 166 173 | mpan | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 175 | 59 174 | sylanb | ⊢ ( ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 176 | 175 | eximi | ⊢ ( ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 177 | 165 176 | sylbi | ⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 178 | excom | ⊢ ( ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) | |
| 179 | 177 178 | sylib | ⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 180 | df-rex | ⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) | |
| 181 | 56 | elsnres | ⊢ ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ) |
| 182 | 181 | anbi1i | ⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 183 | 19.41v | ⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) | |
| 184 | anass | ⊢ ( ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) | |
| 185 | 184 | exbii | ⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 186 | 182 183 185 | 3bitr2i | ⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 187 | 186 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 188 | 180 187 | bitri | ⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 189 | 179 188 | sylibr | ⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
| 190 | ssrexv | ⊢ ( ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 → ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) | |
| 191 | 164 189 190 | mpsyl | ⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
| 192 | 163 191 | syl6 | ⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 193 | 192 | expd | ⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝑎 ∈ dom 𝑠 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 194 | 193 | rexlimdv | ⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 195 | 194 | 3expib | ⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 196 | 195 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 197 | 34 196 | mpdd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 198 | 197 | alrimiv | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 199 | df-fr | ⊢ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) | |
| 200 | 198 199 | sylibr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |