This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. An acceptable function's domain is a subset of A . (Contributed by Paul Chapman, 21-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrlem1.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| Assertion | frrlem3 | ⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem1.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | 1 | frrlem1 | ⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 3 | 2 | eqabri | ⊢ ( 𝑔 ∈ 𝐵 ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 4 | fndm | ⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝑔 Fn 𝑧 → ( dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴 ) → dom 𝑔 ⊆ 𝐴 ) |
| 7 | 6 | adantrr | ⊢ ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) → dom 𝑔 ⊆ 𝐴 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → dom 𝑔 ⊆ 𝐴 ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → dom 𝑔 ⊆ 𝐴 ) |
| 10 | 3 9 | sylbi | ⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |