This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem15.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem15.2 | |- F = frecs ( R , A , G ) |
||
| Assertion | frrlem15 | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem15.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem15.2 | |- F = frecs ( R , A , G ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- u e. _V |
|
| 5 | 3 4 | breldm | |- ( x g u -> x e. dom g ) |
| 6 | 5 | adantr | |- ( ( x g u /\ x h v ) -> x e. dom g ) |
| 7 | vex | |- v e. _V |
|
| 8 | 3 7 | breldm | |- ( x h v -> x e. dom h ) |
| 9 | 8 | adantl | |- ( ( x g u /\ x h v ) -> x e. dom h ) |
| 10 | 6 9 | elind | |- ( ( x g u /\ x h v ) -> x e. ( dom g i^i dom h ) ) |
| 11 | id | |- ( ( x g u /\ x h v ) -> ( x g u /\ x h v ) ) |
|
| 12 | 4 | brresi | |- ( x ( g |` ( dom g i^i dom h ) ) u <-> ( x e. ( dom g i^i dom h ) /\ x g u ) ) |
| 13 | 7 | brresi | |- ( x ( h |` ( dom g i^i dom h ) ) v <-> ( x e. ( dom g i^i dom h ) /\ x h v ) ) |
| 14 | 12 13 | anbi12i | |- ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) <-> ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) ) |
| 15 | an4 | |- ( ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) <-> ( ( x e. ( dom g i^i dom h ) /\ x e. ( dom g i^i dom h ) ) /\ ( x g u /\ x h v ) ) ) |
|
| 16 | 14 15 | bitri | |- ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) <-> ( ( x e. ( dom g i^i dom h ) /\ x e. ( dom g i^i dom h ) ) /\ ( x g u /\ x h v ) ) ) |
| 17 | 10 10 11 16 | syl21anbrc | |- ( ( x g u /\ x h v ) -> ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) ) |
| 18 | inss1 | |- ( dom g i^i dom h ) C_ dom g |
|
| 19 | 1 | frrlem3 | |- ( g e. B -> dom g C_ A ) |
| 20 | 18 19 | sstrid | |- ( g e. B -> ( dom g i^i dom h ) C_ A ) |
| 21 | 20 | ad2antrl | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( dom g i^i dom h ) C_ A ) |
| 22 | simpll | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> R Fr A ) |
|
| 23 | frss | |- ( ( dom g i^i dom h ) C_ A -> ( R Fr A -> R Fr ( dom g i^i dom h ) ) ) |
|
| 24 | 21 22 23 | sylc | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> R Fr ( dom g i^i dom h ) ) |
| 25 | simplr | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> R Se A ) |
|
| 26 | sess2 | |- ( ( dom g i^i dom h ) C_ A -> ( R Se A -> R Se ( dom g i^i dom h ) ) ) |
|
| 27 | 21 25 26 | sylc | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> R Se ( dom g i^i dom h ) ) |
| 28 | 1 | frrlem4 | |- ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| 29 | 28 | adantl | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| 30 | 1 | frrlem4 | |- ( ( h e. B /\ g e. B ) -> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( a G ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) |
| 31 | incom | |- ( dom g i^i dom h ) = ( dom h i^i dom g ) |
|
| 32 | 31 | reseq2i | |- ( h |` ( dom g i^i dom h ) ) = ( h |` ( dom h i^i dom g ) ) |
| 33 | fneq12 | |- ( ( ( h |` ( dom g i^i dom h ) ) = ( h |` ( dom h i^i dom g ) ) /\ ( dom g i^i dom h ) = ( dom h i^i dom g ) ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) ) |
|
| 34 | 32 31 33 | mp2an | |- ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) |
| 35 | 32 | fveq1i | |- ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( ( h |` ( dom h i^i dom g ) ) ` a ) |
| 36 | predeq2 | |- ( ( dom g i^i dom h ) = ( dom h i^i dom g ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) ) |
|
| 37 | 31 36 | ax-mp | |- Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) |
| 38 | 32 37 | reseq12i | |- ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) |
| 39 | 38 | oveq2i | |- ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( a G ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) |
| 40 | 35 39 | eqeq12i | |- ( ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( a G ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) |
| 41 | 31 40 | raleqbii | |- ( A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( a G ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) |
| 42 | 34 41 | anbi12i | |- ( ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( a G ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) |
| 43 | 30 42 | sylibr | |- ( ( h e. B /\ g e. B ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| 44 | 43 | ancoms | |- ( ( g e. B /\ h e. B ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| 45 | 44 | adantl | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |
| 46 | frr3g | |- ( ( ( R Fr ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) /\ ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) /\ ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) |
|
| 47 | 24 27 29 45 46 | syl211anc | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) |
| 48 | 47 | breqd | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( x ( g |` ( dom g i^i dom h ) ) v <-> x ( h |` ( dom g i^i dom h ) ) v ) ) |
| 49 | 48 | biimprd | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( x ( h |` ( dom g i^i dom h ) ) v -> x ( g |` ( dom g i^i dom h ) ) v ) ) |
| 50 | 1 | frrlem2 | |- ( g e. B -> Fun g ) |
| 51 | 50 | funresd | |- ( g e. B -> Fun ( g |` ( dom g i^i dom h ) ) ) |
| 52 | 51 | ad2antrl | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> Fun ( g |` ( dom g i^i dom h ) ) ) |
| 53 | dffun2 | |- ( Fun ( g |` ( dom g i^i dom h ) ) <-> ( Rel ( g |` ( dom g i^i dom h ) ) /\ A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) ) |
|
| 54 | 2sp | |- ( A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
|
| 55 | 54 | sps | |- ( A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
| 56 | 53 55 | simplbiim | |- ( Fun ( g |` ( dom g i^i dom h ) ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
| 57 | 52 56 | syl | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
| 58 | 49 57 | sylan2d | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) -> u = v ) ) |
| 59 | 17 58 | syl5 | |- ( ( ( R Fr A /\ R Se A ) /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |