This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 . (Contributed by Scott Fenton, 10-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frr3g | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ra4v | ⊢ ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) | |
| 2 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ↔ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 5 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 6 | predeq3 | ⊢ ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 7 | 6 | reseq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 8 | 5 7 | oveq12d | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 9 | 4 8 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 11 | 6 | reseq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 12 | 5 11 | oveq12d | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 14 | 9 13 | anbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) ) |
| 15 | 14 | rspcva | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 16 | eqtr3 | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 17 | 16 | eqcomd | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 18 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 19 | 18 | ex | ⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 20 | 17 19 | syl | ⊢ ( ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 21 | 20 | expimpd | ⊢ ( ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 22 | predss | ⊢ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 | |
| 23 | fvreseq | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) | |
| 24 | 22 23 | mpan2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 25 | 24 | biimpar | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 28 | 21 27 | syl11 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 29 | 28 | expd | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝑧 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 30 | 15 29 | syl | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 31 | 30 | ex | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 32 | 31 | com23 | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 33 | 32 | impd | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 34 | 3 33 | biimtrrid | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 35 | 34 | a2d | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 36 | 1 35 | syl5 | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 37 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 38 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 39 | 37 38 | eqeq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 40 | 39 | imbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 41 | 36 40 | frins2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 42 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 44 | 43 | com3r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 45 | 44 | an4s | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 46 | 45 | com12 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 47 | 46 | 3impib | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 48 | 47 | ralrimiv | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 49 | eqid | ⊢ 𝐴 = 𝐴 | |
| 50 | 48 49 | jctil | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 51 | eqfnfv2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 52 | 51 | ad2ant2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 53 | 52 | 3adant1 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 54 | 50 53 | mpbird | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐻 ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 ) |