This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996) Avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun2 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) | |
| 2 | cotrg | ⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) | |
| 3 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑤 ◡ 𝐴 𝑥 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ) ) |
| 5 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 I 𝑧 ↔ 𝑤 I 𝑧 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑤 I 𝑧 ) ) ) |
| 7 | 6 | albidv | ⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑧 ( ( 𝑤 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑤 I 𝑧 ) ) ) |
| 8 | breq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑦 ◡ 𝐴 𝑤 ) ) | |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐴 𝑧 ↔ 𝑤 𝐴 𝑧 ) ) | |
| 10 | 8 9 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) ) |
| 11 | 10 | imbi1d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑤 ∧ 𝑤 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) ) |
| 13 | 7 12 | alcomw | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ) |
| 14 | vex | ⊢ 𝑦 ∈ V | |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | 14 15 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑦 ) |
| 17 | 16 | anbi1i | ⊢ ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) ↔ ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) ) |
| 18 | vex | ⊢ 𝑧 ∈ V | |
| 19 | 18 | ideq | ⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 20 | 17 19 | imbi12i | ⊢ ( ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 21 | 20 | 3albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 22 | 13 21 | bitri | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑧 ( ( 𝑦 ◡ 𝐴 𝑥 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 I 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 23 | 2 22 | bitri | ⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 24 | 23 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 25 | 1 24 | bitri | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐴 𝑦 ∧ 𝑥 𝐴 𝑧 ) → 𝑦 = 𝑧 ) ) ) |