This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrlem4.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| Assertion | frrlem4 | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem4.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | 1 | frrlem2 | ⊢ ( 𝑔 ∈ 𝐵 → Fun 𝑔 ) |
| 3 | 2 | funfnd | ⊢ ( 𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔 ) |
| 4 | fnresin1 | ⊢ ( 𝑔 Fn dom 𝑔 → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑔 ∈ 𝐵 → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ) |
| 7 | 1 | frrlem1 | ⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑏 ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) } |
| 8 | 7 | eqabri | ⊢ ( 𝑔 ∈ 𝐵 ↔ ∃ 𝑏 ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 9 | fndm | ⊢ ( 𝑔 Fn 𝑏 → dom 𝑔 = 𝑏 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ) → dom 𝑔 = 𝑏 ) |
| 11 | 10 | raleqdv | ⊢ ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ) → ( ∀ 𝑎 ∈ dom 𝑔 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ↔ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 12 | 11 | biimp3ar | ⊢ ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) → ∀ 𝑎 ∈ dom 𝑔 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) |
| 13 | rsp | ⊢ ( ∀ 𝑎 ∈ dom 𝑔 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) → ( 𝑎 ∈ dom 𝑔 → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) → ( 𝑎 ∈ dom 𝑔 → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑏 ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) → ( 𝑎 ∈ dom 𝑔 → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 16 | 8 15 | sylbi | ⊢ ( 𝑔 ∈ 𝐵 → ( 𝑎 ∈ dom 𝑔 → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 17 | elinel1 | ⊢ ( 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) → 𝑎 ∈ dom 𝑔 ) | |
| 18 | 16 17 | impel | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) |
| 20 | simpr | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) | |
| 21 | 20 | fvresd | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑔 ‘ 𝑎 ) ) |
| 22 | resres | ⊢ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = ( 𝑔 ↾ ( ( dom 𝑔 ∩ dom ℎ ) ∩ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) | |
| 23 | predss | ⊢ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) | |
| 24 | sseqin2 | ⊢ ( Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ↔ ( ( dom 𝑔 ∩ dom ℎ ) ∩ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) | |
| 25 | 23 24 | mpbi | ⊢ ( ( dom 𝑔 ∩ dom ℎ ) ∩ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) |
| 26 | 1 | frrlem1 | ⊢ 𝐵 = { ℎ ∣ ∃ 𝑐 ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) } |
| 27 | 26 | eqabri | ⊢ ( ℎ ∈ 𝐵 ↔ ∃ 𝑐 ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) |
| 28 | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) ↔ ( ∃ 𝑏 ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ∃ 𝑐 ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) ) | |
| 29 | inss1 | ⊢ ( 𝑏 ∩ 𝑐 ) ⊆ 𝑏 | |
| 30 | simpl2l | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → 𝑏 ⊆ 𝐴 ) | |
| 31 | 29 30 | sstrid | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ( 𝑏 ∩ 𝑐 ) ⊆ 𝐴 ) |
| 32 | simp2r | ⊢ ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) → ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) | |
| 33 | simp2r | ⊢ ( ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) → ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) | |
| 34 | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 | |
| 35 | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 | |
| 36 | 34 35 | nfan | ⊢ Ⅎ 𝑎 ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) |
| 37 | elinel1 | ⊢ ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → 𝑎 ∈ 𝑏 ) | |
| 38 | rsp | ⊢ ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 → ( 𝑎 ∈ 𝑏 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ) | |
| 39 | 37 38 | syl5com | ⊢ ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ) |
| 40 | elinel2 | ⊢ ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → 𝑎 ∈ 𝑐 ) | |
| 41 | rsp | ⊢ ( ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 → ( 𝑎 ∈ 𝑐 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ) | |
| 42 | 40 41 | syl5com | ⊢ ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → ( ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ) |
| 43 | 39 42 | anim12d | ⊢ ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → ( ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ) ) |
| 44 | ssin | ⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) | |
| 45 | 44 | biimpi | ⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) |
| 46 | 43 45 | syl6com | ⊢ ( ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) → ( 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) ) |
| 47 | 36 46 | ralrimi | ⊢ ( ( ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) → ∀ 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) |
| 48 | 32 33 47 | syl2an | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ∀ 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) |
| 49 | simpl1 | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → 𝑔 Fn 𝑏 ) | |
| 50 | 49 | fndmd | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → dom 𝑔 = 𝑏 ) |
| 51 | simpr1 | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ℎ Fn 𝑐 ) | |
| 52 | 51 | fndmd | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → dom ℎ = 𝑐 ) |
| 53 | ineq12 | ⊢ ( ( dom 𝑔 = 𝑏 ∧ dom ℎ = 𝑐 ) → ( dom 𝑔 ∩ dom ℎ ) = ( 𝑏 ∩ 𝑐 ) ) | |
| 54 | 53 | sseq1d | ⊢ ( ( dom 𝑔 = 𝑏 ∧ dom ℎ = 𝑐 ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ↔ ( 𝑏 ∩ 𝑐 ) ⊆ 𝐴 ) ) |
| 55 | 53 | sseq2d | ⊢ ( ( dom 𝑔 = 𝑏 ∧ dom ℎ = 𝑐 ) → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ↔ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) ) |
| 56 | 53 55 | raleqbidv | ⊢ ( ( dom 𝑔 = 𝑏 ∧ dom ℎ = 𝑐 ) → ( ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ↔ ∀ 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) ) |
| 57 | 54 56 | anbi12d | ⊢ ( ( dom 𝑔 = 𝑏 ∧ dom ℎ = 𝑐 ) → ( ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ↔ ( ( 𝑏 ∩ 𝑐 ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) ) ) |
| 58 | 50 52 57 | syl2anc | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ( ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ↔ ( ( 𝑏 ∩ 𝑐 ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( 𝑏 ∩ 𝑐 ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( 𝑏 ∩ 𝑐 ) ) ) ) |
| 59 | 31 48 58 | mpbir2and | ⊢ ( ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 60 | 59 | exlimivv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 61 | 28 60 | sylbir | ⊢ ( ( ∃ 𝑏 ( 𝑔 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝑏 ( 𝑔 ‘ 𝑎 ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ∧ ∃ 𝑐 ( ℎ Fn 𝑐 ∧ ( 𝑐 ⊆ 𝐴 ∧ ∀ 𝑎 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝑐 ) ∧ ∀ 𝑎 ∈ 𝑐 ( ℎ ‘ 𝑎 ) = ( 𝑎 𝐺 ( ℎ ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 62 | 8 27 61 | syl2anb | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 64 | preddowncl | ⊢ ( ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) → ( 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) → Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) | |
| 65 | 63 20 64 | sylc | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , 𝐴 , 𝑎 ) ) |
| 66 | 25 65 | eqtrid | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( dom 𝑔 ∩ dom ℎ ) ∩ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = Pred ( 𝑅 , 𝐴 , 𝑎 ) ) |
| 67 | 66 | reseq2d | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( 𝑔 ↾ ( ( dom 𝑔 ∩ dom ℎ ) ∩ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) |
| 68 | 22 67 | eqtrid | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) |
| 69 | 68 | oveq2d | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) = ( 𝑎 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑎 ) ) ) ) |
| 70 | 19 21 69 | 3eqtr4d | ⊢ ( ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ∧ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) |
| 71 | 70 | ralrimiva | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) |
| 72 | 6 71 | jca | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |