This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Next, we calculate the value of C . (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem11.2 | |- F = frecs ( R , A , G ) |
||
| frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
||
| frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
||
| frrlem12.5 | |- ( ph -> R Fr A ) |
||
| frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
||
| frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
||
| Assertion | frrlem12 | |- ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem11.2 | |- F = frecs ( R , A , G ) |
|
| 3 | frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
|
| 4 | frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 5 | frrlem12.5 | |- ( ph -> R Fr A ) |
|
| 6 | frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
|
| 7 | frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
|
| 8 | elun | |- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w e. { z } ) ) |
|
| 9 | velsn | |- ( w e. { z } <-> w = z ) |
|
| 10 | 9 | orbi2i | |- ( ( w e. ( S i^i dom F ) \/ w e. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) |
| 11 | 8 10 | bitri | |- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w = z ) ) |
| 12 | elinel2 | |- ( w e. ( S i^i dom F ) -> w e. dom F ) |
|
| 13 | 1 | frrlem1 | |- B = { p | E. q ( p Fn q /\ ( q C_ A /\ A. w e. q Pred ( R , A , w ) C_ q ) /\ A. w e. q ( p ` w ) = ( w G ( p |` Pred ( R , A , w ) ) ) ) } |
| 14 | breq1 | |- ( x = q -> ( x g u <-> q g u ) ) |
|
| 15 | breq1 | |- ( x = q -> ( x h v <-> q h v ) ) |
|
| 16 | 14 15 | anbi12d | |- ( x = q -> ( ( x g u /\ x h v ) <-> ( q g u /\ q h v ) ) ) |
| 17 | 16 | imbi1d | |- ( x = q -> ( ( ( x g u /\ x h v ) -> u = v ) <-> ( ( q g u /\ q h v ) -> u = v ) ) ) |
| 18 | 17 | imbi2d | |- ( x = q -> ( ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) <-> ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) ) ) |
| 19 | 18 3 | chvarvv | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( q g u /\ q h v ) -> u = v ) ) |
| 20 | 13 2 19 | frrlem10 | |- ( ( ph /\ w e. dom F ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
| 21 | 12 20 | sylan2 | |- ( ( ph /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
| 22 | 21 | adantlr | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F ` w ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
| 23 | 4 | fveq1i | |- ( C ` w ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) |
| 24 | 1 2 3 | frrlem9 | |- ( ph -> Fun F ) |
| 25 | 24 | funresd | |- ( ph -> Fun ( F |` S ) ) |
| 26 | dmres | |- dom ( F |` S ) = ( S i^i dom F ) |
|
| 27 | df-fn | |- ( ( F |` S ) Fn ( S i^i dom F ) <-> ( Fun ( F |` S ) /\ dom ( F |` S ) = ( S i^i dom F ) ) ) |
|
| 28 | 25 26 27 | sylanblrc | |- ( ph -> ( F |` S ) Fn ( S i^i dom F ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) Fn ( S i^i dom F ) ) |
| 31 | vex | |- z e. _V |
|
| 32 | ovex | |- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
|
| 33 | 31 32 | fnsn | |- { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } |
| 34 | 33 | a1i | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) |
| 35 | eldifn | |- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
|
| 36 | elinel2 | |- ( z e. ( S i^i dom F ) -> z e. dom F ) |
|
| 37 | 35 36 | nsyl | |- ( z e. ( A \ dom F ) -> -. z e. ( S i^i dom F ) ) |
| 38 | disjsn | |- ( ( ( S i^i dom F ) i^i { z } ) = (/) <-> -. z e. ( S i^i dom F ) ) |
|
| 39 | 37 38 | sylibr | |- ( z e. ( A \ dom F ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
| 40 | 39 | adantl | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
| 41 | 40 | adantr | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( S i^i dom F ) i^i { z } ) = (/) ) |
| 42 | simpr | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. ( S i^i dom F ) ) |
|
| 43 | fvun1 | |- ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ w e. ( S i^i dom F ) ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) |
|
| 44 | 30 34 41 42 43 | syl112anc | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` w ) = ( ( F |` S ) ` w ) ) |
| 45 | 23 44 | eqtrid | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( ( F |` S ) ` w ) ) |
| 46 | elinel1 | |- ( w e. ( S i^i dom F ) -> w e. S ) |
|
| 47 | 46 | adantl | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> w e. S ) |
| 48 | 47 | fvresd | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) ` w ) = ( F ` w ) ) |
| 49 | 45 48 | eqtrd | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( F ` w ) ) |
| 50 | 1 2 3 4 | frrlem11 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |
| 51 | fnfun | |- ( C Fn ( ( S i^i dom F ) u. { z } ) -> Fun C ) |
|
| 52 | 50 51 | syl | |- ( ( ph /\ z e. ( A \ dom F ) ) -> Fun C ) |
| 53 | 52 | adantr | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Fun C ) |
| 54 | ssun1 | |- ( F |` S ) C_ ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 55 | 54 4 | sseqtrri | |- ( F |` S ) C_ C |
| 56 | 55 | a1i | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( F |` S ) C_ C ) |
| 57 | eldifi | |- ( z e. ( A \ dom F ) -> z e. A ) |
|
| 58 | 57 7 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
| 59 | rspa | |- ( ( A. w e. S Pred ( R , A , w ) C_ S /\ w e. S ) -> Pred ( R , A , w ) C_ S ) |
|
| 60 | 58 46 59 | syl2an | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ S ) |
| 61 | 1 2 | frrlem8 | |- ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) |
| 62 | 12 61 | syl | |- ( w e. ( S i^i dom F ) -> Pred ( R , A , w ) C_ dom F ) |
| 63 | 62 | adantl | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom F ) |
| 64 | 60 63 | ssind | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) |
| 65 | 64 26 | sseqtrrdi | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> Pred ( R , A , w ) C_ dom ( F |` S ) ) |
| 66 | fun2ssres | |- ( ( Fun C /\ ( F |` S ) C_ C /\ Pred ( R , A , w ) C_ dom ( F |` S ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) |
|
| 67 | 53 56 65 66 | syl3anc | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( ( F |` S ) |` Pred ( R , A , w ) ) ) |
| 68 | 60 | resabs1d | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) |
| 69 | 67 68 | eqtrd | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C |` Pred ( R , A , w ) ) = ( F |` Pred ( R , A , w ) ) ) |
| 70 | 69 | oveq2d | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( w G ( F |` Pred ( R , A , w ) ) ) ) |
| 71 | 22 49 70 | 3eqtr4d | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( S i^i dom F ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 72 | 71 | ex | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( S i^i dom F ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 73 | 31 32 | fvsn | |- ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) |
| 74 | 4 | fveq1i | |- ( C ` z ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) |
| 75 | 33 | a1i | |- ( ( ph /\ z e. ( A \ dom F ) ) -> { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } ) |
| 76 | vsnid | |- z e. { z } |
|
| 77 | 76 | a1i | |- ( ( ph /\ z e. ( A \ dom F ) ) -> z e. { z } ) |
| 78 | fvun2 | |- ( ( ( F |` S ) Fn ( S i^i dom F ) /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } Fn { z } /\ ( ( ( S i^i dom F ) i^i { z } ) = (/) /\ z e. { z } ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
|
| 79 | 29 75 40 77 78 | syl112anc | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
| 80 | 74 79 | eqtrid | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ` z ) ) |
| 81 | 4 | reseq1i | |- ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) |
| 82 | resundir | |- ( ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
|
| 83 | 81 82 | eqtri | |- ( C |` Pred ( R , A , z ) ) = ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
| 84 | 57 6 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> Pred ( R , A , z ) C_ S ) |
| 85 | 84 | resabs1d | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( F |` S ) |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) |
| 86 | predfrirr | |- ( R Fr A -> -. z e. Pred ( R , A , z ) ) |
|
| 87 | 5 86 | syl | |- ( ph -> -. z e. Pred ( R , A , z ) ) |
| 88 | 87 | adantr | |- ( ( ph /\ z e. ( A \ dom F ) ) -> -. z e. Pred ( R , A , z ) ) |
| 89 | ressnop0 | |- ( -. z e. Pred ( R , A , z ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
|
| 90 | 88 89 | syl | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
| 91 | 85 90 | uneq12d | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( ( F |` Pred ( R , A , z ) ) u. (/) ) ) |
| 92 | un0 | |- ( ( F |` Pred ( R , A , z ) ) u. (/) ) = ( F |` Pred ( R , A , z ) ) |
|
| 93 | 91 92 | eqtrdi | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( ( F |` S ) |` Pred ( R , A , z ) ) u. ( { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( F |` Pred ( R , A , z ) ) ) |
| 94 | 83 93 | eqtrid | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) ) |
| 95 | 94 | oveq2d | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( z G ( C |` Pred ( R , A , z ) ) ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) |
| 96 | 73 80 95 | 3eqtr4a | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) |
| 97 | fveq2 | |- ( w = z -> ( C ` w ) = ( C ` z ) ) |
|
| 98 | id | |- ( w = z -> w = z ) |
|
| 99 | predeq3 | |- ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) |
|
| 100 | 99 | reseq2d | |- ( w = z -> ( C |` Pred ( R , A , w ) ) = ( C |` Pred ( R , A , z ) ) ) |
| 101 | 98 100 | oveq12d | |- ( w = z -> ( w G ( C |` Pred ( R , A , w ) ) ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) |
| 102 | 97 101 | eqeq12d | |- ( w = z -> ( ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) <-> ( C ` z ) = ( z G ( C |` Pred ( R , A , z ) ) ) ) ) |
| 103 | 96 102 | syl5ibrcom | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w = z -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 104 | 72 103 | jaod | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( ( w e. ( S i^i dom F ) \/ w = z ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 105 | 11 104 | biimtrid | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( w e. ( ( S i^i dom F ) u. { z } ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 106 | 105 | 3impia | |- ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |