This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 5-Jul-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmgsum.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | ||
| frlmgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frlmgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| frlmgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| frlmgsum.f | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ) | ||
| frlmgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | ||
| Assertion | frlmgsum | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmgsum.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | frlmgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | |
| 4 | frlmgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | frlmgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 6 | frlmgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | frlmgsum.f | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ) | |
| 8 | frlmgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | |
| 9 | 1 2 | frlmpws | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 10 | 6 4 9 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 13 | eqid | ⊢ ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 14 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) | |
| 15 | ovexd | ⊢ ( 𝜑 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ V ) | |
| 16 | eqid | ⊢ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 17 | 1 2 16 | frlmlss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 18 | 6 4 17 | syl2anc | ⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 19 | 12 16 | lssss | ⊢ ( 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) → 𝐵 ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 21 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) : 𝐽 ⟶ 𝐵 ) |
| 22 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 23 | 6 22 | syl | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 24 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 25 | 24 | pwslmod | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ 𝑉 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 26 | 23 4 25 | syl2anc | ⊢ ( 𝜑 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 27 | eqid | ⊢ ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 28 | 27 16 | lss0cl | ⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ∈ 𝐵 ) |
| 29 | 26 18 28 | syl2anc | ⊢ ( 𝜑 → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ∈ 𝐵 ) |
| 30 | lmodcmn | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( ringLMod ‘ 𝑅 ) ∈ CMnd ) | |
| 31 | 23 30 | syl | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ CMnd ) |
| 32 | cmnmnd | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ CMnd → ( ringLMod ‘ 𝑅 ) ∈ Mnd ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ Mnd ) |
| 34 | 24 | pwsmnd | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ Mnd ) |
| 35 | 33 4 34 | syl2anc | ⊢ ( 𝜑 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ Mnd ) |
| 36 | 12 13 27 | mndlrid | ⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → ( ( ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) = 𝑥 ) ) |
| 37 | 35 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → ( ( ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) = 𝑥 ) ) |
| 38 | 12 13 14 15 5 20 21 29 37 | gsumress | ⊢ ( 𝜑 → ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ) |
| 39 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 40 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 41 | 1 40 2 | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 42 | 4 7 41 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 | 42 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ ( Base ‘ 𝑅 ) ) |
| 44 | 43 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑈 ∈ ( Base ‘ 𝑅 ) ) |
| 45 | 44 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ ( Base ‘ 𝑅 ) ) |
| 46 | 10 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 47 | 16 | lsssubg | ⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 48 | 26 18 47 | syl2anc | ⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 49 | 14 27 | subg0 | ⊢ ( 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 50 | 48 49 | syl | ⊢ ( 𝜑 → ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( 0g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 51 | 46 50 | eqtr4d | ⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 52 | 3 51 | eqtrid | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 53 | 8 52 | breqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp ( 0g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 54 | 24 39 27 4 5 31 45 53 | pwsgsum | ⊢ ( 𝜑 → ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ringLMod ‘ 𝑅 ) Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 55 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ∈ V ) |
| 56 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ V ) | |
| 57 | 39 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 58 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 59 | 58 | a1i | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 60 | 55 6 56 57 59 | gsumpropd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( ( ringLMod ‘ 𝑅 ) Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 61 | 60 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( ringLMod ‘ 𝑅 ) Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 62 | 54 61 | eqtr4d | ⊢ ( 𝜑 → ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 63 | 11 38 62 | 3eqtr2d | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |