This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndlrid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndlrid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mndlrid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mndlrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndlrid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mndlrid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 | mndid | ⊢ ( 𝐺 ∈ Mnd → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑦 ) = 𝑥 ) ) |
| 5 | 1 3 2 4 | mgmlrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |