This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmpws.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| frlmlss.u | ⊢ 𝑈 = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | ||
| Assertion | frlmlss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmpws.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | frlmlss.u | ⊢ 𝑈 = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 4 | 1 | frlmval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 6 | 2 5 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 7 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 8 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Ring ) | |
| 9 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 11 | fconst6g | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) : 𝐼 ⟶ LMod ) |
| 13 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 14 | 13 | fvconst2 | ⊢ ( 𝑖 ∈ 𝐼 → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) = ( ringLMod ‘ 𝑅 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 17 | rlmsca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑖 ∈ 𝐼 ) → ( Scalar ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑖 ) ) = 𝑅 ) |
| 20 | eqid | ⊢ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) | |
| 21 | eqid | ⊢ ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) | |
| 22 | eqid | ⊢ ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) | |
| 23 | 7 8 12 19 20 21 22 | dsmmlss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 24 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 25 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 26 | 24 25 | pwsval | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 27 | 13 26 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 29 | 17 | eqcomd | ⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = 𝑅 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = 𝑅 ) |
| 31 | 30 | oveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 32 | 28 31 | eqtr2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 34 | 33 3 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( LSubSp ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = 𝑈 ) |
| 35 | 23 34 | eleqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ 𝑈 ) |
| 36 | 6 35 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 ∈ 𝑈 ) |