This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmpws.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmpws | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmpws.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | eqid | ⊢ ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) | |
| 4 | 3 | dsmmval2 | ⊢ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ↾s ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 5 | rlmsca | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 8 | 1 | frlmval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = 𝐹 ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( Base ‘ 𝐹 ) ) |
| 11 | 10 2 | eqtr4di | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = 𝐵 ) |
| 12 | 7 11 | oveq12d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ↾s ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) = ( ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ↾s 𝐵 ) ) |
| 13 | 4 12 | eqtrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ↾s 𝐵 ) ) |
| 14 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 15 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 16 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 17 | 15 16 | pwsval | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 18 | 14 17 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ↾s 𝐵 ) ) |
| 21 | 13 8 20 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |