This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lss0cl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 0 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 2 | lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 2 | lssn0 | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ≠ ∅ ) |
| 4 | n0 | ⊢ ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑈 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝑈 ∈ 𝑆 → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑊 ∈ LMod ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 9 | 8 2 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 11 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 12 | 8 1 11 | lmodsubid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) = 0 ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) = 0 ) |
| 14 | 11 2 | lssvsubcl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 15 | 14 | anabsan2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 16 | 15 | 3impa | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( -g ‘ 𝑊 ) 𝑥 ) ∈ 𝑈 ) |
| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈 ) → 0 ∈ 𝑈 ) |
| 18 | 17 | 3expia | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑈 → 0 ∈ 𝑈 ) ) |
| 19 | 18 | exlimdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ∃ 𝑥 𝑥 ∈ 𝑈 → 0 ∈ 𝑈 ) ) |
| 20 | 6 19 | mpd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 0 ∈ 𝑈 ) |