This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | ||
| frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | ||
| frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | ||
| frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | ||
| frgpup.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | ||
| frgpup.y | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | ||
| Assertion | frgpup2 | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 2 | frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 3 | frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 4 | frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | |
| 5 | frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frgpup.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 8 | frgpup.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 9 | frgpup.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 10 | frgpup.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 11 | frgpup.e | ⊢ 𝐸 = ran ( 𝑔 ∈ 𝑊 ↦ 〈 [ 𝑔 ] ∼ , ( 𝐻 Σg ( 𝑇 ∘ 𝑔 ) ) 〉 ) | |
| 12 | frgpup.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | |
| 13 | frgpup.y | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | |
| 14 | 8 12 | vrgpval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑈 ‘ 𝐴 ) = [ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ] ∼ ) |
| 15 | 5 13 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝐴 ) = [ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ] ∼ ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝐴 ) ) = ( 𝐸 ‘ [ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ] ∼ ) ) |
| 17 | 0ex | ⊢ ∅ ∈ V | |
| 18 | 17 | prid1 | ⊢ ∅ ∈ { ∅ , 1o } |
| 19 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 20 | 18 19 | eleqtrri | ⊢ ∅ ∈ 2o |
| 21 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o ) → 〈 𝐴 , ∅ 〉 ∈ ( 𝐼 × 2o ) ) | |
| 22 | 13 20 21 | sylancl | ⊢ ( 𝜑 → 〈 𝐴 , ∅ 〉 ∈ ( 𝐼 × 2o ) ) |
| 23 | 22 | s1cld | ⊢ ( 𝜑 → 〈“ 〈 𝐴 , ∅ 〉 ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 24 | 2on | ⊢ 2o ∈ On | |
| 25 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 26 | 5 24 25 | sylancl | ⊢ ( 𝜑 → ( 𝐼 × 2o ) ∈ V ) |
| 27 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 28 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 29 | 26 27 28 | 3syl | ⊢ ( 𝜑 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 30 | 7 29 | eqtrid | ⊢ ( 𝜑 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 31 | 23 30 | eleqtrrd | ⊢ ( 𝜑 → 〈“ 〈 𝐴 , ∅ 〉 ”〉 ∈ 𝑊 ) |
| 32 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑 ∧ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ∈ 𝑊 ) → ( 𝐸 ‘ [ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) ) ) |
| 33 | 31 32 | mpdan | ⊢ ( 𝜑 → ( 𝐸 ‘ [ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ] ∼ ) = ( 𝐻 Σg ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) ) ) |
| 34 | 1 2 3 4 5 6 | frgpuptf | ⊢ ( 𝜑 → 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) |
| 35 | s1co | ⊢ ( ( 〈 𝐴 , ∅ 〉 ∈ ( 𝐼 × 2o ) ∧ 𝑇 : ( 𝐼 × 2o ) ⟶ 𝐵 ) → ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) = 〈“ ( 𝑇 ‘ 〈 𝐴 , ∅ 〉 ) ”〉 ) | |
| 36 | 22 34 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) = 〈“ ( 𝑇 ‘ 〈 𝐴 , ∅ 〉 ) ”〉 ) |
| 37 | df-ov | ⊢ ( 𝐴 𝑇 ∅ ) = ( 𝑇 ‘ 〈 𝐴 , ∅ 〉 ) | |
| 38 | iftrue | ⊢ ( 𝑧 = ∅ → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 39 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 40 | 38 39 | sylan9eqr | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = ∅ ) → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 41 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 42 | 40 3 41 | ovmpoa | ⊢ ( ( 𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o ) → ( 𝐴 𝑇 ∅ ) = ( 𝐹 ‘ 𝐴 ) ) |
| 43 | 13 20 42 | sylancl | ⊢ ( 𝜑 → ( 𝐴 𝑇 ∅ ) = ( 𝐹 ‘ 𝐴 ) ) |
| 44 | 37 43 | eqtr3id | ⊢ ( 𝜑 → ( 𝑇 ‘ 〈 𝐴 , ∅ 〉 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 45 | 44 | s1eqd | ⊢ ( 𝜑 → 〈“ ( 𝑇 ‘ 〈 𝐴 , ∅ 〉 ) ”〉 = 〈“ ( 𝐹 ‘ 𝐴 ) ”〉 ) |
| 46 | 36 45 | eqtrd | ⊢ ( 𝜑 → ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) = 〈“ ( 𝐹 ‘ 𝐴 ) ”〉 ) |
| 47 | 46 | oveq2d | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) ) = ( 𝐻 Σg 〈“ ( 𝐹 ‘ 𝐴 ) ”〉 ) ) |
| 48 | 6 13 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 49 | 1 | gsumws1 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐻 Σg 〈“ ( 𝐹 ‘ 𝐴 ) ”〉 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 50 | 48 49 | syl | ⊢ ( 𝜑 → ( 𝐻 Σg 〈“ ( 𝐹 ‘ 𝐴 ) ”〉 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 51 | 47 50 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑇 ∘ 〈“ 〈 𝐴 , ∅ 〉 ”〉 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 52 | 16 33 51 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑈 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐴 ) ) |