This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgp0.m | |- G = ( freeGrp ` I ) |
|
| frgp0.r | |- .~ = ( ~FG ` I ) |
||
| Assertion | frgp0 | |- ( I e. V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgp0.m | |- G = ( freeGrp ` I ) |
|
| 2 | frgp0.r | |- .~ = ( ~FG ` I ) |
|
| 3 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 4 | 1 3 2 | frgpval | |- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 5 | 2on | |- 2o e. On |
|
| 6 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 7 | 5 6 | mpan2 | |- ( I e. V -> ( I X. 2o ) e. _V ) |
| 8 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 9 | 3 8 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 10 | 7 9 | syl | |- ( I e. V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 11 | 10 | eqcomd | |- ( I e. V -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 12 | eqidd | |- ( I e. V -> ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ) |
|
| 13 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 14 | 13 2 | efger | |- .~ Er ( _I ` Word ( I X. 2o ) ) |
| 15 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 16 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 17 | 7 15 16 | 3syl | |- ( I e. V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 18 | ereq2 | |- ( ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) -> ( .~ Er ( _I ` Word ( I X. 2o ) ) <-> .~ Er Word ( I X. 2o ) ) ) |
|
| 19 | 17 18 | syl | |- ( I e. V -> ( .~ Er ( _I ` Word ( I X. 2o ) ) <-> .~ Er Word ( I X. 2o ) ) ) |
| 20 | 14 19 | mpbii | |- ( I e. V -> .~ Er Word ( I X. 2o ) ) |
| 21 | fvexd | |- ( I e. V -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
|
| 22 | eqid | |- ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 23 | 1 3 2 22 | frgpcpbl | |- ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) |
| 24 | 23 | a1i | |- ( I e. V -> ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) ) |
| 25 | 3 | frmdmnd | |- ( ( I X. 2o ) e. _V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 26 | 7 25 | syl | |- ( I e. V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 27 | 26 | 3ad2ant1 | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 28 | simp2 | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> x e. Word ( I X. 2o ) ) |
|
| 29 | 11 | 3ad2ant1 | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 30 | 28 29 | eleqtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 31 | simp3 | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> y e. Word ( I X. 2o ) ) |
|
| 32 | 31 29 | eleqtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 33 | 8 22 | mndcl | |- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 34 | 27 30 32 33 | syl3anc | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 35 | 34 29 | eleqtrrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. Word ( I X. 2o ) ) |
| 36 | 20 | adantr | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> .~ Er Word ( I X. 2o ) ) |
| 37 | 26 | adantr | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
| 38 | 34 | 3adant3r3 | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 39 | simpr3 | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> z e. Word ( I X. 2o ) ) |
|
| 40 | 11 | adantr | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 41 | 39 40 | eleqtrd | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 42 | 8 22 | mndcl | |- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 43 | 37 38 41 42 | syl3anc | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 44 | 43 40 | eleqtrrd | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. Word ( I X. 2o ) ) |
| 45 | 36 44 | erref | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) .~ ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) |
| 46 | 30 | 3adant3r3 | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 47 | 32 | 3adant3r3 | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 48 | 8 22 | mndass | |- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ ( x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) = ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
| 49 | 37 46 47 41 48 | syl13anc | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) = ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
| 50 | 45 49 | breqtrd | |- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) .~ ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
| 51 | wrd0 | |- (/) e. Word ( I X. 2o ) |
|
| 52 | 51 | a1i | |- ( I e. V -> (/) e. Word ( I X. 2o ) ) |
| 53 | 51 11 | eleqtrid | |- ( I e. V -> (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 54 | 53 | adantr | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 55 | 11 | eleq2d | |- ( I e. V -> ( x e. Word ( I X. 2o ) <-> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) ) |
| 56 | 55 | biimpa | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 57 | 3 8 22 | frmdadd | |- ( ( (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( (/) ++ x ) ) |
| 58 | 54 56 57 | syl2anc | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( (/) ++ x ) ) |
| 59 | ccatlid | |- ( x e. Word ( I X. 2o ) -> ( (/) ++ x ) = x ) |
|
| 60 | 59 | adantl | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ++ x ) = x ) |
| 61 | 58 60 | eqtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = x ) |
| 62 | 20 | adantr | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> .~ Er Word ( I X. 2o ) ) |
| 63 | simpr | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. Word ( I X. 2o ) ) |
|
| 64 | 62 63 | erref | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x .~ x ) |
| 65 | 61 64 | eqbrtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) .~ x ) |
| 66 | revcl | |- ( x e. Word ( I X. 2o ) -> ( reverse ` x ) e. Word ( I X. 2o ) ) |
|
| 67 | 66 | adantl | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( reverse ` x ) e. Word ( I X. 2o ) ) |
| 68 | eqid | |- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 69 | 68 | efgmf | |- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) |
| 70 | 69 | a1i | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) |
| 71 | wrdco | |- ( ( ( reverse ` x ) e. Word ( I X. 2o ) /\ ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. Word ( I X. 2o ) ) |
|
| 72 | 67 70 71 | syl2anc | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. Word ( I X. 2o ) ) |
| 73 | 11 | adantr | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 74 | 72 73 | eleqtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 75 | 3 8 22 | frmdadd | |- ( ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) ) |
| 76 | 74 56 75 | syl2anc | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) ) |
| 77 | 17 | eleq2d | |- ( I e. V -> ( x e. ( _I ` Word ( I X. 2o ) ) <-> x e. Word ( I X. 2o ) ) ) |
| 78 | 77 | biimpar | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. ( _I ` Word ( I X. 2o ) ) ) |
| 79 | eqid | |- ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) |
|
| 80 | 13 2 68 79 | efginvrel1 | |- ( x e. ( _I ` Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) .~ (/) ) |
| 81 | 78 80 | syl | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) .~ (/) ) |
| 82 | 76 81 | eqbrtrd | |- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) .~ (/) ) |
| 83 | 4 11 12 20 21 24 35 50 52 65 72 82 | qusgrp2 | |- ( I e. V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |