This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpval.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| frgpval.b | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | ||
| frgpval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpcpbl.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | frgpcpbl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpval.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | frgpval.b | ⊢ 𝑀 = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 3 | frgpval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 4 | frgpcpbl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 6 | eqid | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 7 | eqid | ⊢ ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 8 | eqid | ⊢ ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) = ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) | |
| 9 | eqid | ⊢ ( 𝑚 ∈ { 𝑡 ∈ ( Word ( I ‘ Word ( 𝐼 × 2o ) ) ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) = ( 𝑚 ∈ { 𝑡 ∈ ( Word ( I ‘ Word ( 𝐼 × 2o ) ) ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ ( ( I ‘ Word ( 𝐼 × 2o ) ) ∖ ∪ 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ 𝑥 ) ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 10 | 5 3 6 7 8 9 | efgcpbl2 | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 ++ 𝐵 ) ∼ ( 𝐶 ++ 𝐷 ) ) |
| 11 | 5 3 | efger | ⊢ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 13 | simpl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐴 ∼ 𝐶 ) | |
| 14 | 12 13 | ercl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 15 | 5 | efgrcl | ⊢ ( 𝐴 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → ( 𝐼 ∈ V ∧ ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐼 ∈ V ∧ ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) ) |
| 17 | 16 | simprd | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 18 | 16 | simpld | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐼 ∈ V ) |
| 19 | 2on | ⊢ 2o ∈ On | |
| 20 | xpexg | ⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐼 × 2o ) ∈ V ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 23 | 2 22 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ 𝑀 ) = Word ( 𝐼 × 2o ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( Base ‘ 𝑀 ) = Word ( 𝐼 × 2o ) ) |
| 25 | 17 24 | eqtr4d | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( I ‘ Word ( 𝐼 × 2o ) ) = ( Base ‘ 𝑀 ) ) |
| 26 | 14 25 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐴 ∈ ( Base ‘ 𝑀 ) ) |
| 27 | simpr | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐵 ∼ 𝐷 ) | |
| 28 | 12 27 | ercl | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐵 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 29 | 28 25 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐵 ∈ ( Base ‘ 𝑀 ) ) |
| 30 | 2 22 4 | frmdadd | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑀 ) ∧ 𝐵 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
| 32 | 12 13 | ercl2 | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐶 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 33 | 32 25 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐶 ∈ ( Base ‘ 𝑀 ) ) |
| 34 | 12 27 | ercl2 | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐷 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 35 | 34 25 | eleqtrd | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → 𝐷 ∈ ( Base ‘ 𝑀 ) ) |
| 36 | 2 22 4 | frmdadd | ⊢ ( ( 𝐶 ∈ ( Base ‘ 𝑀 ) ∧ 𝐷 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐶 + 𝐷 ) = ( 𝐶 ++ 𝐷 ) ) |
| 37 | 33 35 36 | syl2anc | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐶 + 𝐷 ) = ( 𝐶 ++ 𝐷 ) ) |
| 38 | 10 31 37 | 3brtr4d | ⊢ ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) |