This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp2.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusgrp2.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusgrp2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | ||
| qusgrp2.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | ||
| qusgrp2.x | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | ||
| qusgrp2.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | ||
| qusgrp2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | ||
| qusgrp2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) ∼ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| qusgrp2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | ||
| qusgrp2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) ∼ 𝑥 ) | ||
| qusgrp2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | ||
| qusgrp2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 + 𝑥 ) ∼ 0 ) | ||
| Assertion | qusgrp2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp2.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusgrp2.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusgrp2.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) | |
| 4 | qusgrp2.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 5 | qusgrp2.x | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | |
| 6 | qusgrp2.e | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | |
| 7 | qusgrp2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) | |
| 8 | qusgrp2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) ∼ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 9 | qusgrp2.3 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| 10 | qusgrp2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) ∼ 𝑥 ) | |
| 11 | qusgrp2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | |
| 12 | qusgrp2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 + 𝑥 ) ∼ 0 ) | |
| 13 | eqid | ⊢ ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) = ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) | |
| 14 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 15 | 2 14 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 16 | erex | ⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) | |
| 17 | 4 15 16 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 18 | 1 2 13 17 5 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) “s 𝑅 ) ) |
| 19 | 1 2 13 17 5 | quslem | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 20 | 7 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 21 | 4 15 13 20 6 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 22 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ∼ Er 𝑉 ) |
| 23 | 22 8 | erthi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → [ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ] ∼ = [ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ] ∼ ) |
| 24 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 ∈ V ) |
| 25 | 22 24 13 | divsfval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = [ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ] ∼ ) |
| 26 | 22 24 13 | divsfval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) = [ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ] ∼ ) |
| 27 | 23 25 26 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ∼ Er 𝑉 ) |
| 29 | 28 10 | erthi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ ( 0 + 𝑥 ) ] ∼ = [ 𝑥 ] ∼ ) |
| 30 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑉 ∈ V ) |
| 31 | 28 30 13 | divsfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 0 + 𝑥 ) ) = [ ( 0 + 𝑥 ) ] ∼ ) |
| 32 | 28 30 13 | divsfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑥 ) = [ 𝑥 ] ∼ ) |
| 33 | 29 31 32 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 0 + 𝑥 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑥 ) ) |
| 34 | 28 12 | ersym | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ∼ ( 𝑁 + 𝑥 ) ) |
| 35 | 28 34 | erthi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ 0 ] ∼ = [ ( 𝑁 + 𝑥 ) ] ∼ ) |
| 36 | 28 30 13 | divsfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = [ 0 ] ∼ ) |
| 37 | 28 30 13 | divsfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑁 + 𝑥 ) ) = [ ( 𝑁 + 𝑥 ) ] ∼ ) |
| 38 | 35 36 37 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑁 + 𝑥 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) ) |
| 39 | 18 2 3 19 21 5 7 27 9 33 11 38 | imasgrp2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 40 | 4 15 13 | divsfval | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = [ 0 ] ∼ ) |
| 41 | 40 | eqcomd | ⊢ ( 𝜑 → [ 0 ] ∼ = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) ) |
| 42 | 41 | eqeq1d | ⊢ ( 𝜑 → ( [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ↔ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 43 | 42 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑈 ∈ Grp ∧ [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ) ↔ ( 𝑈 ∈ Grp ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 44 | 39 43 | mpbird | ⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ [ 0 ] ∼ = ( 0g ‘ 𝑈 ) ) ) |