This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) ) | |
| 2 | anabs1 | ⊢ ( ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) | |
| 3 | anidm | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ↔ 𝐵 ∈ 𝐴 ) | |
| 4 | 1 2 3 | 3bitrri | ⊢ ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) |
| 5 | pocl | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐵 ∧ 𝐵 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) ) | |
| 6 | 5 | imp | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐵 ∧ 𝐵 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ¬ 𝐵 𝑅 𝐵 ) |
| 8 | 4 7 | sylan2b | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) |