This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodntriv.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fprodntriv.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| fprodntriv.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | ||
| Assertion | fprodntriv | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodntriv.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fprodntriv.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | fprodntriv.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 4 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | 6 1 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 8 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 9 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 10 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 11 | 10 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 13 | 12 | peano2zd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 14 | seqex | ⊢ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ∈ V | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ∈ V ) |
| 16 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
| 19 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 ∈ ℤ ) |
| 20 | 19 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 ∈ ℝ ) |
| 21 | 19 | peano2zd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 22 | 21 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 23 | elfzelz | ⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ℤ ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℤ ) |
| 25 | 24 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 26 | 20 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 27 | elfzle1 | ⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → ( 𝑁 + 1 ) ≤ 𝑚 ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ≤ 𝑚 ) |
| 29 | 20 22 25 26 28 | ltletrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 < 𝑚 ) |
| 30 | 20 25 | ltnled | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑁 ) ) |
| 31 | 29 30 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ≤ 𝑁 ) |
| 32 | 31 | intnand | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) |
| 33 | 32 | intnand | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) ) |
| 34 | elfz2 | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) ) | |
| 35 | 33 34 | sylnibr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 | 18 35 | ssneldd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ∈ 𝐴 ) |
| 37 | 36 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) = 1 ) |
| 38 | fzssuz | ⊢ ( ( 𝑁 + 1 ) ... 𝑛 ) ⊆ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 39 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 40 | uzss | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 42 | 41 1 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ 𝑍 ) |
| 43 | 38 42 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) ... 𝑛 ) ⊆ 𝑍 ) |
| 44 | 43 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 45 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 46 | 37 45 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
| 47 | nfcv | ⊢ Ⅎ 𝑘 𝑚 | |
| 48 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 | |
| 49 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 50 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 51 | 48 49 50 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) |
| 52 | eleq1w | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) | |
| 53 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 54 | 52 53 | ifbieq1d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 55 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 56 | 47 51 54 55 | fvmptf | ⊢ ( ( 𝑚 ∈ 𝑍 ∧ if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 57 | 44 46 56 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
| 58 | elfzuz | ⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 59 | 58 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 60 | 1ex | ⊢ 1 ∈ V | |
| 61 | 60 | fvconst2 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) = 1 ) |
| 62 | 59 61 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) = 1 ) |
| 63 | 37 57 62 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) ) |
| 64 | 17 63 | seqfveq | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑛 ) = ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) ) |
| 65 | 9 | prodf1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) = 1 ) |
| 66 | 65 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) = 1 ) |
| 67 | 64 66 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑛 ) = 1 ) |
| 68 | 9 13 15 16 67 | climconst | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) |
| 69 | neeq1 | ⊢ ( 𝑦 = 1 → ( 𝑦 ≠ 0 ↔ 1 ≠ 0 ) ) | |
| 70 | breq2 | ⊢ ( 𝑦 = 1 → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) ) | |
| 71 | 69 70 | anbi12d | ⊢ ( 𝑦 = 1 → ( ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 1 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) ) ) |
| 72 | 60 71 | spcev | ⊢ ( ( 1 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 73 | 8 68 72 | sylancr | ⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 74 | seqeq1 | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ) | |
| 75 | 74 | breq1d | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 76 | 75 | anbi2d | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 77 | 76 | exbidv | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
| 78 | 77 | rspcev | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
| 79 | 7 73 78 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |