This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐴 = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | id | ⊢ ( 1 ∈ ℤ → 1 ∈ ℤ ) | |
| 4 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 5 | 4 | a1i | ⊢ ( 1 ∈ ℤ → 1 ≠ 0 ) |
| 6 | 2 | prodfclim1 | ⊢ ( 1 ∈ ℤ → seq 1 ( · , ( ℕ × { 1 } ) ) ⇝ 1 ) |
| 7 | 0ss | ⊢ ∅ ⊆ ℕ | |
| 8 | 7 | a1i | ⊢ ( 1 ∈ ℤ → ∅ ⊆ ℕ ) |
| 9 | fvconst2g | ⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = 1 ) | |
| 10 | noel | ⊢ ¬ 𝑘 ∈ ∅ | |
| 11 | 10 | iffalsei | ⊢ if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) = 1 |
| 12 | 9 11 | eqtr4di | ⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = if ( 𝑘 ∈ ∅ , 𝐴 , 1 ) ) |
| 13 | 10 | pm2.21i | ⊢ ( 𝑘 ∈ ∅ → 𝐴 ∈ ℂ ) |
| 14 | 13 | adantl | ⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ∅ ) → 𝐴 ∈ ℂ ) |
| 15 | 2 3 5 6 8 12 14 | zprodn0 | ⊢ ( 1 ∈ ℤ → ∏ 𝑘 ∈ ∅ 𝐴 = 1 ) |
| 16 | 1 15 | ax-mp | ⊢ ∏ 𝑘 ∈ ∅ 𝐴 = 1 |