This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodntriv.1 | |- Z = ( ZZ>= ` M ) |
|
| fprodntriv.2 | |- ( ph -> N e. Z ) |
||
| fprodntriv.3 | |- ( ph -> A C_ ( M ... N ) ) |
||
| Assertion | fprodntriv | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodntriv.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fprodntriv.2 | |- ( ph -> N e. Z ) |
|
| 3 | fprodntriv.3 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 4 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 7 | 6 1 | eleqtrrdi | |- ( ph -> ( N + 1 ) e. Z ) |
| 8 | ax-1ne0 | |- 1 =/= 0 |
|
| 9 | eqid | |- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
|
| 10 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 11 | 10 1 | eleq2s | |- ( N e. Z -> N e. ZZ ) |
| 12 | 2 11 | syl | |- ( ph -> N e. ZZ ) |
| 13 | 12 | peano2zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 14 | seqex | |- seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) e. _V |
|
| 15 | 14 | a1i | |- ( ph -> seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) e. _V ) |
| 16 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 17 | simpr | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 18 | 3 | ad2antrr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> A C_ ( M ... N ) ) |
| 19 | 12 | ad2antrr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> N e. ZZ ) |
| 20 | 19 | zred | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> N e. RR ) |
| 21 | 19 | peano2zd | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( N + 1 ) e. ZZ ) |
| 22 | 21 | zred | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( N + 1 ) e. RR ) |
| 23 | elfzelz | |- ( m e. ( ( N + 1 ) ... n ) -> m e. ZZ ) |
|
| 24 | 23 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> m e. ZZ ) |
| 25 | 24 | zred | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> m e. RR ) |
| 26 | 20 | ltp1d | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> N < ( N + 1 ) ) |
| 27 | elfzle1 | |- ( m e. ( ( N + 1 ) ... n ) -> ( N + 1 ) <_ m ) |
|
| 28 | 27 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( N + 1 ) <_ m ) |
| 29 | 20 22 25 26 28 | ltletrd | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> N < m ) |
| 30 | 20 25 | ltnled | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( N < m <-> -. m <_ N ) ) |
| 31 | 29 30 | mpbid | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> -. m <_ N ) |
| 32 | 31 | intnand | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> -. ( M <_ m /\ m <_ N ) ) |
| 33 | 32 | intnand | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> -. ( ( M e. ZZ /\ N e. ZZ /\ m e. ZZ ) /\ ( M <_ m /\ m <_ N ) ) ) |
| 34 | elfz2 | |- ( m e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ m e. ZZ ) /\ ( M <_ m /\ m <_ N ) ) ) |
|
| 35 | 33 34 | sylnibr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> -. m e. ( M ... N ) ) |
| 36 | 18 35 | ssneldd | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> -. m e. A ) |
| 37 | 36 | iffalsed | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> if ( m e. A , [_ m / k ]_ B , 1 ) = 1 ) |
| 38 | fzssuz | |- ( ( N + 1 ) ... n ) C_ ( ZZ>= ` ( N + 1 ) ) |
|
| 39 | 6 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 40 | uzss | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
|
| 41 | 39 40 | syl | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
| 42 | 41 1 | sseqtrrdi | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ZZ>= ` ( N + 1 ) ) C_ Z ) |
| 43 | 38 42 | sstrid | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( N + 1 ) ... n ) C_ Z ) |
| 44 | 43 | sselda | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> m e. Z ) |
| 45 | ax-1cn | |- 1 e. CC |
|
| 46 | 37 45 | eqeltrdi | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> if ( m e. A , [_ m / k ]_ B , 1 ) e. CC ) |
| 47 | nfcv | |- F/_ k m |
|
| 48 | nfv | |- F/ k m e. A |
|
| 49 | nfcsb1v | |- F/_ k [_ m / k ]_ B |
|
| 50 | nfcv | |- F/_ k 1 |
|
| 51 | 48 49 50 | nfif | |- F/_ k if ( m e. A , [_ m / k ]_ B , 1 ) |
| 52 | eleq1w | |- ( k = m -> ( k e. A <-> m e. A ) ) |
|
| 53 | csbeq1a | |- ( k = m -> B = [_ m / k ]_ B ) |
|
| 54 | 52 53 | ifbieq1d | |- ( k = m -> if ( k e. A , B , 1 ) = if ( m e. A , [_ m / k ]_ B , 1 ) ) |
| 55 | eqid | |- ( k e. Z |-> if ( k e. A , B , 1 ) ) = ( k e. Z |-> if ( k e. A , B , 1 ) ) |
|
| 56 | 47 51 54 55 | fvmptf | |- ( ( m e. Z /\ if ( m e. A , [_ m / k ]_ B , 1 ) e. CC ) -> ( ( k e. Z |-> if ( k e. A , B , 1 ) ) ` m ) = if ( m e. A , [_ m / k ]_ B , 1 ) ) |
| 57 | 44 46 56 | syl2anc | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( ( k e. Z |-> if ( k e. A , B , 1 ) ) ` m ) = if ( m e. A , [_ m / k ]_ B , 1 ) ) |
| 58 | elfzuz | |- ( m e. ( ( N + 1 ) ... n ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 59 | 58 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
| 60 | 1ex | |- 1 e. _V |
|
| 61 | 60 | fvconst2 | |- ( m e. ( ZZ>= ` ( N + 1 ) ) -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ` m ) = 1 ) |
| 62 | 59 61 | syl | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ` m ) = 1 ) |
| 63 | 37 57 62 | 3eqtr4d | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( ( k e. Z |-> if ( k e. A , B , 1 ) ) ` m ) = ( ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ` m ) ) |
| 64 | 17 63 | seqfveq | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ` n ) = ( seq ( N + 1 ) ( x. , ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ) ` n ) ) |
| 65 | 9 | prodf1 | |- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( seq ( N + 1 ) ( x. , ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ) ` n ) = 1 ) |
| 66 | 65 | adantl | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , ( ( ZZ>= ` ( N + 1 ) ) X. { 1 } ) ) ` n ) = 1 ) |
| 67 | 64 66 | eqtrd | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ` n ) = 1 ) |
| 68 | 9 13 15 16 67 | climconst | |- ( ph -> seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> 1 ) |
| 69 | neeq1 | |- ( y = 1 -> ( y =/= 0 <-> 1 =/= 0 ) ) |
|
| 70 | breq2 | |- ( y = 1 -> ( seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y <-> seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> 1 ) ) |
|
| 71 | 69 70 | anbi12d | |- ( y = 1 -> ( ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> ( 1 =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> 1 ) ) ) |
| 72 | 60 71 | spcev | |- ( ( 1 =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> 1 ) -> E. y ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |
| 73 | 8 68 72 | sylancr | |- ( ph -> E. y ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |
| 74 | seqeq1 | |- ( n = ( N + 1 ) -> seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) = seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ) |
|
| 75 | 74 | breq1d | |- ( n = ( N + 1 ) -> ( seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y <-> seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |
| 76 | 75 | anbi2d | |- ( n = ( N + 1 ) -> ( ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) ) |
| 77 | 76 | exbidv | |- ( n = ( N + 1 ) -> ( E. y ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) ) |
| 78 | 77 | rspcev | |- ( ( ( N + 1 ) e. Z /\ E. y ( y =/= 0 /\ seq ( N + 1 ) ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |
| 79 | 7 73 78 | syl2anc | |- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , ( k e. Z |-> if ( k e. A , B , 1 ) ) ) ~~> y ) ) |