This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the well-order in fnwe to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnse.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } | |
| fnse.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| fnse.3 | ⊢ ( 𝜑 → 𝑅 Se 𝐵 ) | ||
| fnse.4 | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑤 ) ∈ V ) | ||
| Assertion | fnse | ⊢ ( 𝜑 → 𝑇 Se 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnse.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } | |
| 2 | fnse.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | fnse.3 | ⊢ ( 𝜑 → 𝑅 Se 𝐵 ) | |
| 4 | fnse.4 | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑤 ) ∈ V ) | |
| 5 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 6 | seex | ⊢ ( ( 𝑅 Se 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ) | |
| 7 | 3 5 6 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ) |
| 8 | snex | ⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ V | |
| 9 | unexg | ⊢ ( ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∈ V ∧ { ( 𝐹 ‘ 𝑧 ) } ∈ V ) → ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) |
| 11 | imaeq2 | ⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ◡ 𝐹 “ 𝑤 ) = ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ( ◡ 𝐹 “ 𝑤 ) ∈ V ↔ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑤 = ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) → ( ( 𝜑 → ( ◡ 𝐹 “ 𝑤 ) ∈ V ) ↔ ( 𝜑 → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) ) |
| 14 | 13 4 | vtoclg | ⊢ ( ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V → ( 𝜑 → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝜑 ∧ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ∈ V ) → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) |
| 16 | 10 15 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ∈ V ) |
| 17 | inss2 | ⊢ ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝑇 “ { 𝑧 } ) | |
| 18 | vex | ⊢ 𝑤 ∈ V | |
| 19 | 18 | eliniseg | ⊢ ( 𝑧 ∈ V → ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) ↔ 𝑤 𝑇 𝑧 ) ) |
| 20 | 19 | elv | ⊢ ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) ↔ 𝑤 𝑇 𝑧 ) |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 22 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 23 | 21 22 | breqan12d | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 24 | 21 22 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 25 | breq12 | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑥 𝑆 𝑦 ↔ 𝑤 𝑆 𝑧 ) ) | |
| 26 | 24 25 | anbi12d | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) |
| 27 | 23 26 | orbi12d | ⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) ) |
| 28 | 27 1 | brab2a | ⊢ ( 𝑤 𝑇 𝑧 ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) ) |
| 29 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 30 | 29 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 31 | breq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑤 ) → ( 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 32 | 31 | elrab3 | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 | 30 32 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 | 33 | biimprd | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ) ) |
| 35 | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 36 | fvex | ⊢ ( 𝐹 ‘ 𝑤 ) ∈ V | |
| 37 | 36 | elsn | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 38 | 35 37 | sylibr | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) |
| 40 | 34 39 | orim12d | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∨ ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 41 | elun | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∨ ( 𝐹 ‘ 𝑤 ) ∈ { ( 𝐹 ‘ 𝑧 ) } ) ) | |
| 42 | 40 41 | imbitrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 43 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) | |
| 44 | 42 43 | jctild | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 45 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 47 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 49 | 44 48 | sylibrd | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 50 | 49 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑧 ) ∨ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 𝑆 𝑧 ) ) ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 51 | 28 50 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 𝑇 𝑧 → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 52 | 20 51 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ ( ◡ 𝑇 “ { 𝑧 } ) → 𝑤 ∈ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) ) |
| 53 | 52 | ssrdv | ⊢ ( 𝜑 → ( ◡ 𝑇 “ { 𝑧 } ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 54 | 17 53 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ ( { 𝑢 ∈ 𝐵 ∣ 𝑢 𝑅 ( 𝐹 ‘ 𝑧 ) } ∪ { ( 𝐹 ‘ 𝑧 ) } ) ) ) |
| 56 | 16 55 | ssexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) |
| 57 | 56 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) |
| 58 | dfse2 | ⊢ ( 𝑇 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑇 “ { 𝑧 } ) ) ∈ V ) | |
| 59 | 57 58 | sylibr | ⊢ ( 𝜑 → 𝑇 Se 𝐴 ) |