This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that F and G are the projections of H to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvproj.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) | |
| fvproj.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| fvproj.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | fvproj | ⊢ ( 𝜑 → ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvproj.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) | |
| 2 | fvproj.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 3 | fvproj.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 5 | fveq2 | ⊢ ( 𝑎 = 𝑋 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 6 | 5 | opeq1d | ⊢ ( 𝑎 = 𝑋 → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑏 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 7 | fveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑌 ) ) | |
| 8 | 7 | opeq2d | ⊢ ( 𝑏 = 𝑌 → 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑏 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 10 | 9 | opeq1d | ⊢ ( 𝑥 = 𝑎 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑏 ) ) | |
| 12 | 11 | opeq2d | ⊢ ( 𝑦 = 𝑏 → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 13 | 10 12 | cbvmpov | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑦 ) 〉 ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 14 | 1 13 | eqtri | ⊢ 𝐻 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑏 ) 〉 ) |
| 15 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ∈ V | |
| 16 | 6 8 14 15 | ovmpo | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐻 𝑌 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
| 17 | 2 3 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |
| 18 | 4 17 | eqtr3id | ⊢ ( 𝜑 → ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐺 ‘ 𝑌 ) 〉 ) |