This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the well-order in fnwe to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnse.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
| fnse.2 | |- ( ph -> F : A --> B ) |
||
| fnse.3 | |- ( ph -> R Se B ) |
||
| fnse.4 | |- ( ph -> ( `' F " w ) e. _V ) |
||
| Assertion | fnse | |- ( ph -> T Se A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnse.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
| 2 | fnse.2 | |- ( ph -> F : A --> B ) |
|
| 3 | fnse.3 | |- ( ph -> R Se B ) |
|
| 4 | fnse.4 | |- ( ph -> ( `' F " w ) e. _V ) |
|
| 5 | 2 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. B ) |
| 6 | seex | |- ( ( R Se B /\ ( F ` z ) e. B ) -> { u e. B | u R ( F ` z ) } e. _V ) |
|
| 7 | 3 5 6 | syl2an2r | |- ( ( ph /\ z e. A ) -> { u e. B | u R ( F ` z ) } e. _V ) |
| 8 | snex | |- { ( F ` z ) } e. _V |
|
| 9 | unexg | |- ( ( { u e. B | u R ( F ` z ) } e. _V /\ { ( F ` z ) } e. _V ) -> ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) e. _V ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( ph /\ z e. A ) -> ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) e. _V ) |
| 11 | imaeq2 | |- ( w = ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) -> ( `' F " w ) = ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) |
|
| 12 | 11 | eleq1d | |- ( w = ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) -> ( ( `' F " w ) e. _V <-> ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) e. _V ) ) |
| 13 | 12 | imbi2d | |- ( w = ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) -> ( ( ph -> ( `' F " w ) e. _V ) <-> ( ph -> ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) e. _V ) ) ) |
| 14 | 13 4 | vtoclg | |- ( ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) e. _V -> ( ph -> ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) e. _V ) ) |
| 15 | 14 | impcom | |- ( ( ph /\ ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) e. _V ) -> ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) e. _V ) |
| 16 | 10 15 | syldan | |- ( ( ph /\ z e. A ) -> ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) e. _V ) |
| 17 | inss2 | |- ( A i^i ( `' T " { z } ) ) C_ ( `' T " { z } ) |
|
| 18 | vex | |- w e. _V |
|
| 19 | 18 | eliniseg | |- ( z e. _V -> ( w e. ( `' T " { z } ) <-> w T z ) ) |
| 20 | 19 | elv | |- ( w e. ( `' T " { z } ) <-> w T z ) |
| 21 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 22 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 23 | 21 22 | breqan12d | |- ( ( x = w /\ y = z ) -> ( ( F ` x ) R ( F ` y ) <-> ( F ` w ) R ( F ` z ) ) ) |
| 24 | 21 22 | eqeqan12d | |- ( ( x = w /\ y = z ) -> ( ( F ` x ) = ( F ` y ) <-> ( F ` w ) = ( F ` z ) ) ) |
| 25 | breq12 | |- ( ( x = w /\ y = z ) -> ( x S y <-> w S z ) ) |
|
| 26 | 24 25 | anbi12d | |- ( ( x = w /\ y = z ) -> ( ( ( F ` x ) = ( F ` y ) /\ x S y ) <-> ( ( F ` w ) = ( F ` z ) /\ w S z ) ) ) |
| 27 | 23 26 | orbi12d | |- ( ( x = w /\ y = z ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) <-> ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) ) ) |
| 28 | 27 1 | brab2a | |- ( w T z <-> ( ( w e. A /\ z e. A ) /\ ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) ) ) |
| 29 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. B ) |
| 30 | 29 | adantrr | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( F ` w ) e. B ) |
| 31 | breq1 | |- ( u = ( F ` w ) -> ( u R ( F ` z ) <-> ( F ` w ) R ( F ` z ) ) ) |
|
| 32 | 31 | elrab3 | |- ( ( F ` w ) e. B -> ( ( F ` w ) e. { u e. B | u R ( F ` z ) } <-> ( F ` w ) R ( F ` z ) ) ) |
| 33 | 30 32 | syl | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( F ` w ) e. { u e. B | u R ( F ` z ) } <-> ( F ` w ) R ( F ` z ) ) ) |
| 34 | 33 | biimprd | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( F ` w ) R ( F ` z ) -> ( F ` w ) e. { u e. B | u R ( F ` z ) } ) ) |
| 35 | simpl | |- ( ( ( F ` w ) = ( F ` z ) /\ w S z ) -> ( F ` w ) = ( F ` z ) ) |
|
| 36 | fvex | |- ( F ` w ) e. _V |
|
| 37 | 36 | elsn | |- ( ( F ` w ) e. { ( F ` z ) } <-> ( F ` w ) = ( F ` z ) ) |
| 38 | 35 37 | sylibr | |- ( ( ( F ` w ) = ( F ` z ) /\ w S z ) -> ( F ` w ) e. { ( F ` z ) } ) |
| 39 | 38 | a1i | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( ( F ` w ) = ( F ` z ) /\ w S z ) -> ( F ` w ) e. { ( F ` z ) } ) ) |
| 40 | 34 39 | orim12d | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) -> ( ( F ` w ) e. { u e. B | u R ( F ` z ) } \/ ( F ` w ) e. { ( F ` z ) } ) ) ) |
| 41 | elun | |- ( ( F ` w ) e. ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) <-> ( ( F ` w ) e. { u e. B | u R ( F ` z ) } \/ ( F ` w ) e. { ( F ` z ) } ) ) |
|
| 42 | 40 41 | imbitrrdi | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) -> ( F ` w ) e. ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) |
| 43 | simprl | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> w e. A ) |
|
| 44 | 42 43 | jctild | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) -> ( w e. A /\ ( F ` w ) e. ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 45 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 46 | 45 | adantr | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> F Fn A ) |
| 47 | elpreima | |- ( F Fn A -> ( w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) <-> ( w e. A /\ ( F ` w ) e. ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) <-> ( w e. A /\ ( F ` w ) e. ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 49 | 44 48 | sylibrd | |- ( ( ph /\ ( w e. A /\ z e. A ) ) -> ( ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) -> w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 50 | 49 | expimpd | |- ( ph -> ( ( ( w e. A /\ z e. A ) /\ ( ( F ` w ) R ( F ` z ) \/ ( ( F ` w ) = ( F ` z ) /\ w S z ) ) ) -> w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 51 | 28 50 | biimtrid | |- ( ph -> ( w T z -> w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 52 | 20 51 | biimtrid | |- ( ph -> ( w e. ( `' T " { z } ) -> w e. ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) ) |
| 53 | 52 | ssrdv | |- ( ph -> ( `' T " { z } ) C_ ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) |
| 54 | 17 53 | sstrid | |- ( ph -> ( A i^i ( `' T " { z } ) ) C_ ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) |
| 55 | 54 | adantr | |- ( ( ph /\ z e. A ) -> ( A i^i ( `' T " { z } ) ) C_ ( `' F " ( { u e. B | u R ( F ` z ) } u. { ( F ` z ) } ) ) ) |
| 56 | 16 55 | ssexd | |- ( ( ph /\ z e. A ) -> ( A i^i ( `' T " { z } ) ) e. _V ) |
| 57 | 56 | ralrimiva | |- ( ph -> A. z e. A ( A i^i ( `' T " { z } ) ) e. _V ) |
| 58 | dfse2 | |- ( T Se A <-> A. z e. A ( A i^i ( `' T " { z } ) ) e. _V ) |
|
| 59 | 57 58 | sylibr | |- ( ph -> T Se A ) |