This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfse2 | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 2 | dfrab3 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑥 } ) | |
| 3 | iniseg | ⊢ ( 𝑥 ∈ V → ( ◡ 𝑅 “ { 𝑥 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑥 } ) | |
| 4 | 3 | elv | ⊢ ( ◡ 𝑅 “ { 𝑥 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑥 } |
| 5 | 4 | ineq2i | ⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑥 } ) |
| 6 | 2 5 | eqtr4i | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) |
| 7 | 6 | eleq1i | ⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) ∈ V ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) ∈ V ) |
| 9 | 1 8 | bitri | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑥 } ) ) ∈ V ) |