This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnchoice | ⊢ ( 𝐴 ∈ Fin → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 | ⊢ ( 𝑤 = ∅ → ( 𝑓 Fn 𝑤 ↔ 𝑓 Fn ∅ ) ) | |
| 2 | raleq | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ ∅ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝑤 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 5 | fneq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝑦 ) ) | |
| 6 | raleq | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 8 | 7 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑓 ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 9 | fneq2 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 Fn 𝑤 ↔ 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 10 | raleq | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 12 | 11 | exbidv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 13 | fneq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝐴 ) ) | |
| 14 | raleq | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 15 | 13 14 | anbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 16 | 15 | exbidv | ⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑓 ( 𝑓 Fn 𝑤 ∧ ∀ 𝑥 ∈ 𝑤 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 17 | 0ex | ⊢ ∅ ∈ V | |
| 18 | fneq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 Fn ∅ ↔ ∅ Fn ∅ ) ) | |
| 19 | eqid | ⊢ ∅ = ∅ | |
| 20 | fn0 | ⊢ ( ∅ Fn ∅ ↔ ∅ = ∅ ) | |
| 21 | 19 20 | mpbir | ⊢ ∅ Fn ∅ |
| 22 | 17 18 21 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 Fn ∅ |
| 23 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) | |
| 24 | 22 23 | exan | ⊢ ∃ 𝑓 ( 𝑓 Fn ∅ ∧ ∀ 𝑥 ∈ ∅ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 25 | dffn2 | ⊢ ( 𝑓 Fn 𝑦 ↔ 𝑓 : 𝑦 ⟶ V ) | |
| 26 | 25 | biimpi | ⊢ ( 𝑓 Fn 𝑦 → 𝑓 : 𝑦 ⟶ V ) |
| 27 | 26 | ad2antrl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → 𝑓 : 𝑦 ⟶ V ) |
| 28 | vex | ⊢ 𝑧 ∈ V | |
| 29 | 28 | a1i | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → 𝑧 ∈ V ) |
| 30 | simpllr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 31 | vex | ⊢ 𝑤 ∈ V | |
| 32 | 31 | a1i | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → 𝑤 ∈ V ) |
| 33 | fsnunf | ⊢ ( ( 𝑓 : 𝑦 ⟶ V ∧ ( 𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑤 ∈ V ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ V ) | |
| 34 | 27 29 30 32 33 | syl121anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ V ) |
| 35 | dffn2 | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ V ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ) |
| 37 | simplr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → 𝑧 = ∅ ) | |
| 38 | simprr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 39 | nfv | ⊢ Ⅎ 𝑥 ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) | |
| 40 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) | |
| 41 | 39 40 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 42 | simpr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) | |
| 43 | simpllr | ⊢ ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 44 | 43 | adantr | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ¬ 𝑧 ∈ 𝑦 ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
| 46 | 42 45 | jca | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 47 | nelne2 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦 ) → 𝑥 ≠ 𝑧 ) | |
| 48 | 47 | necomd | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦 ) → 𝑧 ≠ 𝑥 ) |
| 49 | 46 48 | syl | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → 𝑧 ≠ 𝑥 ) |
| 50 | fvunsn | ⊢ ( 𝑧 ≠ 𝑥 → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 52 | simpllr | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 53 | 52 | adantr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 54 | simplr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ≠ ∅ ) | |
| 55 | neeq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ≠ ∅ ↔ 𝑥 ≠ ∅ ) ) | |
| 56 | fveq2 | ⊢ ( 𝑢 = 𝑥 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 57 | 56 | eleq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝑢 ) ) |
| 58 | eleq2w | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 59 | 57 58 | bitrd | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 60 | 55 59 | imbi12d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ↔ ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 61 | 60 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝑦 ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 62 | 60 | rspcv | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑢 ∈ 𝑦 ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 63 | 61 62 | biimtrrid | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 64 | 42 53 54 63 | syl3c | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
| 65 | 51 64 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 66 | simp-4l | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → 𝑧 = ∅ ) | |
| 67 | 66 | adantr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑧 = ∅ ) |
| 68 | simpr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑥 ∈ { 𝑧 } ) | |
| 69 | simplr | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑥 ≠ ∅ ) | |
| 70 | elsni | ⊢ ( 𝑥 ∈ { 𝑧 } → 𝑥 = 𝑧 ) | |
| 71 | 70 | 3ad2ant2 | ⊢ ( ( 𝑧 = ∅ ∧ 𝑥 ∈ { 𝑧 } ∧ 𝑥 ≠ ∅ ) → 𝑥 = 𝑧 ) |
| 72 | simp1 | ⊢ ( ( 𝑧 = ∅ ∧ 𝑥 ∈ { 𝑧 } ∧ 𝑥 ≠ ∅ ) → 𝑧 = ∅ ) | |
| 73 | 71 72 | eqtrd | ⊢ ( ( 𝑧 = ∅ ∧ 𝑥 ∈ { 𝑧 } ∧ 𝑥 ≠ ∅ ) → 𝑥 = ∅ ) |
| 74 | simp3 | ⊢ ( ( 𝑧 = ∅ ∧ 𝑥 ∈ { 𝑧 } ∧ 𝑥 ≠ ∅ ) → 𝑥 ≠ ∅ ) | |
| 75 | 73 74 | pm2.21ddne | ⊢ ( ( 𝑧 = ∅ ∧ 𝑥 ∈ { 𝑧 } ∧ 𝑥 ≠ ∅ ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 76 | 67 68 69 75 | syl3anc | ⊢ ( ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 77 | simplr | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 78 | elun | ⊢ ( 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 ∈ { 𝑧 } ) ) | |
| 79 | 77 78 | sylib | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 ∈ { 𝑧 } ) ) |
| 80 | 65 76 79 | mpjaodan | ⊢ ( ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 81 | 80 | ex | ⊢ ( ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 82 | 81 | ex | ⊢ ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ( 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 83 | 41 82 | ralrimi | ⊢ ( ( ( 𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 84 | 37 30 38 83 | syl21anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 85 | 36 84 | jca | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 86 | 85 | ex | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) → ( ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 87 | 86 | eximdv | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑓 ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 88 | vex | ⊢ 𝑓 ∈ V | |
| 89 | snex | ⊢ { 〈 𝑧 , 𝑤 〉 } ∈ V | |
| 90 | 88 89 | unex | ⊢ ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ∈ V |
| 91 | fneq1 | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 92 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ) | |
| 93 | 92 | eleq1d | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 94 | 93 | imbi2d | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 95 | 94 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 96 | 91 95 | anbi12d | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) → ( ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 97 | 90 96 | spcev | ⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 98 | 97 | eximi | ⊢ ( ∃ 𝑓 ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 99 | 87 98 | syl6 | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 100 | ax5e | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 101 | 99 100 | syl6 | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 102 | 101 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑧 = ∅ ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 103 | 102 | an32s | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ 𝑧 = ∅ ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 104 | fneq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 105 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 106 | 105 | eleq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ↔ ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 107 | 106 | imbi2d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 108 | 107 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 109 | 104 108 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 110 | 109 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 111 | 103 110 | sylibr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ 𝑧 = ∅ ) → ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 112 | simpllr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 113 | simpr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ¬ 𝑧 = ∅ ) | |
| 114 | neq0 | ⊢ ( ¬ 𝑧 = ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑧 ) | |
| 115 | 113 114 | sylib | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ∃ 𝑤 𝑤 ∈ 𝑧 ) |
| 116 | simplr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 117 | 115 116 | jca | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 118 | 112 117 | jca | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ( ¬ 𝑧 ∈ 𝑦 ∧ ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ) |
| 119 | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑓 ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ↔ ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) | |
| 120 | simprrl | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → 𝑓 Fn 𝑦 ) | |
| 121 | 120 25 | sylib | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → 𝑓 : 𝑦 ⟶ V ) |
| 122 | 28 | a1i | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → 𝑧 ∈ V ) |
| 123 | simpl | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 124 | 31 | a1i | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → 𝑤 ∈ V ) |
| 125 | 121 122 123 124 33 | syl121anc | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ V ) |
| 126 | 125 35 | sylibr | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ) |
| 127 | nfv | ⊢ Ⅎ 𝑥 ¬ 𝑧 ∈ 𝑦 | |
| 128 | nfv | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝑧 | |
| 129 | nfv | ⊢ Ⅎ 𝑥 𝑓 Fn 𝑦 | |
| 130 | 129 40 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 131 | 128 130 | nfan | ⊢ Ⅎ 𝑥 ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 132 | 127 131 | nfan | ⊢ Ⅎ 𝑥 ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 133 | simpr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) | |
| 134 | simp-4l | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 135 | 133 134 | jca | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 136 | 48 50 | syl | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 137 | 135 136 | syl | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 138 | simprrr | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 139 | 138 | ad3antrrr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 140 | simplr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ≠ ∅ ) | |
| 141 | 133 139 140 63 | syl3c | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
| 142 | 137 141 | eqeltrd | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 143 | simplrl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑤 ∈ 𝑧 ) | |
| 144 | 143 | adantr | ⊢ ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → 𝑤 ∈ 𝑧 ) |
| 145 | 144 | adantr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑤 ∈ 𝑧 ) |
| 146 | simpr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑥 ∈ { 𝑧 } ) | |
| 147 | 146 70 | syl | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑥 = 𝑧 ) |
| 148 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑧 ) ) | |
| 149 | 147 148 | syl | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑧 ) ) |
| 150 | 28 | a1i | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑧 ∈ V ) |
| 151 | 31 | a1i | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑤 ∈ V ) |
| 152 | simp-4l | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 153 | 120 | ad3antrrr | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑓 Fn 𝑦 ) |
| 154 | 153 | fndmd | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → dom 𝑓 = 𝑦 ) |
| 155 | 152 154 | neleqtrrd | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ dom 𝑓 ) |
| 156 | fsnunfv | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ∧ ¬ 𝑧 ∈ dom 𝑓 ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑧 ) = 𝑤 ) | |
| 157 | 150 151 155 156 | syl3anc | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑧 ) = 𝑤 ) |
| 158 | 149 157 | eqtrd | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) = 𝑤 ) |
| 159 | 145 158 147 | 3eltr4d | ⊢ ( ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ { 𝑧 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 160 | simplr | ⊢ ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 161 | 160 78 | sylib | ⊢ ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 ∈ { 𝑧 } ) ) |
| 162 | 142 159 161 | mpjaodan | ⊢ ( ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ 𝑥 ≠ ∅ ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 163 | 162 | ex | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) ∧ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 164 | 163 | ex | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ( 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 165 | 132 164 | ralrimi | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 166 | 126 165 | jca | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑤 〉 } ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 167 | 166 97 | syl | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 168 | 167 | ex | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 169 | 168 | 2eximdv | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ∃ 𝑤 ∃ 𝑓 ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∃ 𝑤 ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 170 | 119 169 | biimtrrid | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∃ 𝑤 ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 171 | 170 | imp | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∃ 𝑤 ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 172 | 100 | exlimiv | ⊢ ( ∃ 𝑤 ∃ 𝑓 ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 173 | 171 172 | syl | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 174 | 173 110 | sylibr | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( ∃ 𝑤 𝑤 ∈ 𝑧 ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) → ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 175 | 118 174 | syl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ∧ ¬ 𝑧 = ∅ ) → ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 176 | 111 175 | pm2.61dan | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 177 | 176 | ex | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑓 ( 𝑓 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 178 | 4 8 12 16 24 177 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |