This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.21ddne.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| pm2.21ddne.2 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | pm2.21ddne | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | pm2.21ddne.2 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 3 | 2 | neneqd | ⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
| 4 | 1 3 | pm2.21dd | ⊢ ( 𝜑 → 𝜓 ) |