This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsnunf | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → 𝐹 : 𝑆 ⟶ 𝑇 ) | |
| 2 | simp2l | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → 𝑋 ∈ 𝑉 ) | |
| 3 | simp3 | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → 𝑌 ∈ 𝑇 ) | |
| 4 | f1osng | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑇 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } –1-1-onto→ { 𝑌 } ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } –1-1-onto→ { 𝑌 } ) |
| 6 | f1of | ⊢ ( { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } –1-1-onto→ { 𝑌 } → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) |
| 8 | simp2r | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ¬ 𝑋 ∈ 𝑆 ) | |
| 9 | disjsn | ⊢ ( ( 𝑆 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ 𝑆 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝑆 ∩ { 𝑋 } ) = ∅ ) |
| 11 | fun | ⊢ ( ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ { 〈 𝑋 , 𝑌 〉 } : { 𝑋 } ⟶ { 𝑌 } ) ∧ ( 𝑆 ∩ { 𝑋 } ) = ∅ ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ ( 𝑇 ∪ { 𝑌 } ) ) | |
| 12 | 1 7 10 11 | syl21anc | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ ( 𝑇 ∪ { 𝑌 } ) ) |
| 13 | snssi | ⊢ ( 𝑌 ∈ 𝑇 → { 𝑌 } ⊆ 𝑇 ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → { 𝑌 } ⊆ 𝑇 ) |
| 15 | ssequn2 | ⊢ ( { 𝑌 } ⊆ 𝑇 ↔ ( 𝑇 ∪ { 𝑌 } ) = 𝑇 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝑇 ∪ { 𝑌 } ) = 𝑇 ) |
| 17 | 16 | feq3d | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ ( 𝑇 ∪ { 𝑌 } ) ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ 𝑇 ) ) |
| 18 | 12 17 | mpbid | ⊢ ( ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( 𝑆 ∪ { 𝑋 } ) ⟶ 𝑇 ) |